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ABSTRACT

This thesis examines the nature of laminar flows of viscous
fluids in porous, elastic channels., It is shown that for a wide
range of such flows the importance of inertia effects is governed
by the modified inlet axial Reynolds number. In particular, when
this Reynolds number is small compared to unity, inertia effects
can be neglected.

The significance of two other parameters important to these
flows is also discussed. One, the ratio of a Reynolds number for
the flow through the porous walls to the modified inlet axial Rey-
nolds number, describes the degree to which wall porosity affects
the axial flow. The other, a combination of this Reynolds number
ratio, the ratio of the characteristic normal (vertical) wall dis-
placement to the unstressed channel half-thickness, and the Strouhal
number, governs the relative importance, in unsteady flows, of nor-
mal wall unsteadiness and wall porosity.

The mathematical model chosen for this study is based on the
thin-film blood flow observed in parallel plate artificial kidneys.
The channel walls, however, are taken to be much more rigid than
those found at present. Solutions are obtained for the axial and
normal velocity components, the fluid pressure, and the normal wall
displacement. The effects on these solutions of varying the signi-~
ficant dimensionless parameters governing the flow. field and the

normal wall displacement are discussed.
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CHAPTER 1
INTRODUCTION

One of the most exciting challenges to engineering and medicine
today is the development of highly efficient, lowecost artificial
kidneys, Present artificial kidneys are themselves a remarkable
achievement, However, further improvemenﬁs in these complex devices
are mandatory if artificial kidney treatment is ever to become inexe
pensive enough as to be widely available, Current costs, for example,
are such that only a relatively few from the thousands in this coun-
try each year who need such treatment can be helped, These further
improvements can best come about through the combined efforts of

specialists in physical and biological science fields,

1,1 Present Artificial Kidneys and Recent Research Trends,

Artificial kidney techniques have made astounding progress
over the last decade, Sufferers from chronic renal(kidney) failure,
for instance, have now been kept alive for periods exceeding five
years(17). Artificial kidneys have also been used in the treatment
of certain types of poisoning(zg’g). The way for much of the re=
search responsible for this progress has been led by research teams
under the direction of Kolff at the Cleveland Clinic and Scribner at
the University of Washington School of Medicine, Many of the estiw
mated 100,000 people each year who succumb to illnesses related to

(29)

renal failure now have a new chance for life,

An artificial kidney duplicates two functions of a natural

-1 -
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kidney: it maintains the body's water and electrolytic balances; it
also removes from the bloodstream the nitrogenous end-products of
protein metabolism, among which are urea and creatinine(zg’g).

Unlike the natural kidney, however, the artificial device re-
moves molecules of these blood impurities by means of dialysis, the
membrane separative process based on diffusional transport of mole-
cules through polymeric membranes which separate two fluids. (The
mechanism of the natural kidney is much more complicated). In an
artificial kidney the impurities diffuse from the blood as it flows
through channels bounded by cellophane membranes. In passing through
the cellophane these impurities then enter other channels filled
with a fluid known as "dialysate'". (See Figure 1l.) Inasmuch as the
dialysate itself is flowing, it serves to remove continuously the
impurities  from the neighborhood of the membranes. The driving
force for the diffusional transport, of course, is then a perpetuated
concentration gradient of the impurities across the cellophane(29’13)
In order to avoid the undesirable transport of such larger molecules
in the blood as proteins, however, the actual cellophane membranes
used are "selectively permeable"; they effectively transport mole-
cules only of a certain maximum size.

Excess water is removed from the blood, on the other hand, by
means of ultrafiltration, the process by which pure liquid is ex-
tracted from a solution or suspension using, again, a semi-permeable
. membrane. The driving force for the extraction, however, is a fluid

pressure gradient across the membrane. In an artificial kidney such

a pressure gradient is caused by the excess of blood over dialysate



-3 -

pregsure. This pressure gradient, also, is sometimes augmented by
the imposition of an osmotic pressure gradient. Such a pressure
gradient can be established simply by adding glucose to the dialysate.

Interconnecting tubes join the blood flow channel with the
bloodstream. One.tube passes from an artery in an arm or leg to the
channel; another, from the chamnel to a vein in the same arm or leg
(29). A pump may or may not be required to drive the blood.

Two artificial kidney designs . are in widespread use today: the
Kolff, or "twin-coil", and the Kiil, or "parallel plate"(zg’ls).
These are pictured in Figures 2 and 3. 1In the first design, blood
flows through two ten-meter lengths of cellophane tubing wrapped
together in. several layers about a ten-inch diameter plastic spool.
Fiberglass screening, coiled with the tubing, provides spacing
between.the tubing layers for the flow of dialysate. A.blood pump
is used. One chief advantage of the design is that it.is commer-"
cially available.in assembled, sterilized form.

In the second kidney type, however, blood passes through two
one-meter lengths of cellophane tubing held nearly flat between
.closely-spaced, parallel ribbed plates. Dialysate flows between
the tubing and the.ribbed plates in the spaces provided. by the ribs.
(See Figure 4.) One key advantage of this design is that it re-
quires no.blood pump; the arterial-venous pressure gradient is
sufficient to drive the flow. Because of this advantage.and because
.0f the superior: theoretical efficiency of the parallel plate geome-

try(ls),\the Kiil-type kidney will be emphasized in the study herein.
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In recent years a number of new or modified.artificial kidney
designs have been proposed and tested. However, all aim towards

(29’9). This is because

increased efficiency at lowest possible cost
present kidney machines, cumbersome and expensive to operate and
maintain, are not available to many who need them., For example, the
cost of kidney treatment today ranges from $5000 to $7500(9)! The
expenses of semi-weekly hospital visits, kidney machine maintenance,
and regular care by medical persomnel contribute to this high fig-
ure. It has been obvious to researchers for some time.that the so-
lution to this state of affairs is the development of an artificial
kidney so efficient, reliable, easy to assemble and operate, and yet

inexpensive, as to require a minimum of medical attention(zg’g)'

Ultimately such a device might be portable - perhaps even.able to be

worn on the person - and able to be operated safely in the home.(zg)

.1.2 The Challenge.to the Engineering Sciences of Fluid .and Solid

Mechanics.

It is also clear that the evolution of such an artificial kidney
can be most swiftly brought about by bringing to bear on the problems
involved the talents of engineers as well as medical people. More-
over, there is a particular challenge to workers in the engineering
areas of fluid and solid mechanics. Much of the operation of an
artificial kidney, after all, involves a rather complex flow of
fluids. For instance, in such a device blood issues as a thin film
between parallel, flexible and somewhat porous membranes. Also,
the interconnecting tubes which lead into and out of the blood flow

channel cause flow divergence effects at the channel inlet and con-
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vergence effects at the outlet. And, in the case of Kiil-type
kidneys, the blood flow, driven as it is by the arterial-venous
pressure gradient, is in general pulsatile. An_understanding of
this complex flow is important.to.optimal artificial kidney design.
Indeed, a number of artificial kidney phenomena are connected
with the flow. Red . cell sedimentation in the blood channel is one.
(Blood is. a suspension of several types of particles, including red
cells, in a watery plasma.) However, while.this sedimentation can
pose a very real problem in practice, it can.be controlled by keep-
ing local flow velocities everywhere above. some arbitrary minimum

(29,6)

Secondly, membrane relaxation and sagging (see Figure 4) causes

(5).

irregularities in the flow pattern This relaxation and sagging,
brought about by the action of the blood-dialysate pressure differ-
ence, 1s characteristic of polymeric membrane materials: like cello-
phane when wet. Moreover, it diminishes the transfer-of-undesirable
excesses. of blood solutes and increases the blood flow chammel vol-
une. This volume should be minimized in order to make blood priming

(26)
unnecessary .

(7)

Cole, Pollard and Murray have measured. the. effects of such
membrane distentions on the blood volume. In studies.on a modified
Kiil kidney they report that there exists no linear.relationship
between this volume and the nominal membrane separation distance.

Instead, the channel volume was found to be much more dependent on

the fluid pressure difference across the membranes. Because small

membrane distentions can significantly affect. the channel volume if
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the membrane separation distance is itself small, this conclusion
should not be surprising.
Moreover, membrane distentions. detract. from the efficiency of

parallel plate kidneys. . According to Leonard(ls)

» for.example, "the
flat plate geometry rapidly. degenerates.in performance. as. very small
dimensional variatioms are introduced . . . ."

At least three. research efforts have been directed towards im-
proving parallel plate kidney. performance. and. reducing blood flow
channel. volume by minimizing membrane distentions.. First, Bluemle

andeeonard(IG)

have: tested. a kidney having ''cones" molded. onto its
exterior plates. (See Figure.5). -The cones serveiin.part. to sup-
port the kidney membranes at a number of points on:the dialysate
side. The also increase membrane transfer by. inducing some mixing
of the dialysate.

Secondly, Sachs.and.Funck;Bretano(26)have tested a kidney model
having membranes to which lateral tension is applied. The applica-
tion of such tension seems to be. intended to offset the effects of
membrane sag. Decreased blood volume and increased dialysance (a
measure: of favorable. kidney. performance) .are observed.

.More recently, Babb. and Grimsrud(;)have.sought-toﬂmake the blood
film thickness . more.nearly uniform by using nickel foam-to- support
the membrane at :all- points-on-the dialysate: side. - The: nickel foam,
which. can.be machined. to: an extremely. level surface, completely fills

.the dialysate flow space. Since the foam is. porous, it allows the

dialysate as well as: the excesses: of water and. blood.solutes to pass

freely. It even causes:some mixing of the dialysate, as do the
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cones of Leonard and Bluemle. Babb and Grimsrud believe the use of
this foam is superior. to the application of temsion to the kidney
membranes. in that such tension cannot be maintained indefinitely in
view of membrane relaxation. Again, decreased blood volume (and
film thickness) and improved dialysance is reported.

Some special consideration is due the removal of excess water
in an artificial kidney. .This process, known as ultrafiltration
depends on both membrane porosity and the local fluid pressure gra-
dient across the membranes. At present, it appears that ultrafil-
tration affects the blood. flow only .slightly. However, the converse
need not be true. For instance, the local fluid pressure gradient
across the membranes. - the driving. force for. ultrafiltration - can
depend on position along the flow channel., Furthermore, it may be
true in some future artificial.kidneys. that membrane. porosity does
significantly affect the blood flow. After all, as'Sparks(zg)has
stated, membranes. much more permeable than. the cellophane ones curr-
ently used are required. if. kidneys are ever to be developed having
larger fluxes for blood solutes and water. Hence, the removal of
water from the blood. flow. can be. of. consequence.

Outside the realm of research motivated by artificial kidney
development, work has. been conducted on porous, rigid.channel and
non-~porous, elastic tube: flows. Properly interpreted,. this work
should: have bearing on kidney design. In the case of. porous, rigid

(2)

channel flow, Berman '~ “has obtained a perturbation solution for the

flow for small, constant suction or blowing at the channel walls.
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(28) (39) 1(31,32) (33)

Sellars ,Yuan ,Terril ,.and Terrill. and Shrestha

have extended this. work to. encompass. the cases of large. suction and
blowing. at. the walls and mixed suction. and. blowing. .In addition,

equations similar to Berman's. have been used by Eckert, Donoughe, and

(43)

Moore in correlating flows .in porous.channels with flows: in porous

tubes: and. in boundary layers over porous.surfaces,. and. by Wageman

(44)

and Guevara in investigating experimentally flows in porous tubes.

(45)

Knight and McInteer have: examined the analytical behavior of

Berman's equations.

As for flows in non-porous. elastic tubes (thin-walled), Morgan

(19)

has. studied the steady, fully-developed.case. .The_transmission

of small amplitude,. large wavelength pressure waves in these tubes

has been examined by Morgan_ and Kiely(21>and Morgan,and'Ferrante(zo).

(14)

Kuchar and Ostrach have investigated axial flow development,

Still further work has. been. carried. out by Womersley<38)

(12) ' and Sacks. and Abbott (24:25)

»- Karreman

It is.the purpose.of this analysis to investigate the nature of
the blood flow in an artificial kidney. However, only:two character-
istics of the flow - those judged to.be of the greatest. immediate
importance - will be taken into account herein: wall porosity and
wall elasticity. .Further, the latter characteristic will be accoun-
ted. for in a restricted.sense in that the kidney membranes will be
assumed. to be. supported. by relatively rigid porous material. The
particular physical situations for which: the analysis applies and

the limitations of this study will be discussed in the following

two. chapters.




CHAPTER 11

Characteristics of the Physical System to be Studied

2.1 The Type of Artificial Kidney Assumed.

This analysis will be applicable td aftificial kidneys of the
paralled plate type whose membranes are supported at all points on
the dialysate side by relatively rigid porous material. The porous
material, moreover, will be such that it presents a level surface
to the membranes and completely fills the dialysate flow space.

(See Figure 6.) The extent of porosity will be such that resistance
to water and blood solute transfer is essentially membrane resistance.

It is immediately. apparent.that such kidneys are very similar

to the one proposed by Babb and Grimsrud(l)

» employing membrane
supports made from nickel foam., While relatively rigid porous
material is certainly not used to back. membranes in present kidneys,
there are, nevertheless, valid reasons for studying kidneys which
make use of such material.. First, it is much easier to examine a
kidney blood. flow bounded by membranes having relatively rigid
backing. material than one bounded by membranes subject to relaxation
and sagging. To do otherwise would overly complicate the analysis
herein by the introduction of a complex flow geometry. At the same
time, results.concerning the flow should still hold at least quali-
tatively for present kidneys.

Secondly, it appears likely that future kidney designs will

incorporate some of the membrane-support.ideas.being worked on today.

If indeed. this is the case, the flow results of this analysis will

-9 -
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become quantitatively correct. Further, the analysis should predict
accurately the blood channel wall motions when relatively rigid,

porous backing is used.

Some changes in the terminology of this study are now 'in order.
‘Henceforth, the membranes, .porous backing material, .and the non-~-
‘porous external kidney plates-will: collectively-be referred to as
“the channel "walls." “Deflections" of these walls will be spoken of
‘instead of membrane sag or relaxation.

In most other respects;, the kidney of this analysis will be
like the Kiil in widespread-use. It will have similar flow channel
dimensions (20 cm.x11ll .cm.), two pairs: of  flow channels with such
dimensions in parallel, and-ra-comparable total membrane area (1.8m2).

These and further details of the Kiil are:given by'Sparks(zg) and

Sachsuand’Funck4Bfetano(26).

"2:2 The Rheology of Blood.

Blood, the fluid of-this-flow-analysis, is meither homogeneous
nor Newtonian. Instead, it-is-a suspension of three kinds of par-
ticles .in a watery plasma: red cells (erythrocytes), white cells
(leukocytes), and platelets-(thrombocytes). ‘However, the. red cells,
present in the concentration'of“5x106‘partic1es per cubic centimeter,
comprise the great builk-of: the suspended-particles. Shaped like
‘biconcave disks, somewhat-deformable and approximately .eight microns
in diameter and ‘two'microns—thick; these particles-constitute 40 to

‘48 percentrby volume of normal-whole blood.
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Accordingly, the apparent viscosity of blood, a key fluid
property, can depend on several factors. These include the hemato-
crit, or red cell concentration in percent by volume, the shear rate,
and the size of the vessel or channel in which flow takes place. Of
these factors, the first, the hematocrit, can be affected in the
flow of this study by red cell sedimentation in the flow channel.

(6)

However, Charm has observed that such sedimentation is important
only for relatively low shear rates -~ shear rates on the order of
0.1 to 1.0 second—l. In addition, the red cell concentration can
be increased by the outflow of watery plasma through the porous
channel walls; red cells do not take part in this outflow.

With regard to the dependence of blood viscosity on the shear
rate, the viscosity of blood decreases as the shear rate is in-
creased at low shear rates, but becomes virtually constant at shear
rates above approximately 100 secondsfl. Thus, for practical pur-
poses blood is Newtonian above this value of shear rate.

The third factor - vessel or channel size - assumes importance
when the smallest characteristic length in the flow, such as channel
height, is no longer large compared. to the diameter of a.red cell.

(10)

Fahraeus. and Lindquist » for example, have showﬁ:that in tubes
having diameters smaller. than twenty to thirty red. cell diameters
(about 0.016 to 0.024 centimeters), the apparent viscosity of blood
is less than that in larger tubes. And since the nominal blood

film thickness in Kiil-type artificial kidneys ranges from one to a

few hundredths of a centimeter, it would seem that channel size
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could be important.

A more complete.discussion. of the rheology of blood is given

(18) (23)

by Merrill and Wells and by Rudinger

2.3 The Driving Force for the Flow.

Since artificial kidneys. of the parallel. plate type require
no blood pump, the blood flow in these kidneys is driven entirely
by the arterial-venous.pressure gradient. In general, this pressure
gradient can be considered to be the superposition of a steady
(through-flow) part and a time-dependent part(35). This latter
contribution is periodic and represents the pulsatile portion of
blood flow. A similar two-part pressure gradient will be assumed
to drive the flow of this study.

It should be noted, however, that inasmuch as the arterial-
venous pressure gradient must drive the flow through interconnecting
tubes as well as the blood flow channel, only a portion of this
pressure gradient actually drives the flow in the channel. Some
pressure losses must occur in. the. interconnecting tubes(ll).

The driving forces for the channel wall motions, on the other
hand, are the blood and dialysate'viscous and normal stresses at
the walls, 1In particular, the net normaifstress on the walls is
largely the blood-dialysate pressure difference. (Velocity gradients

at the walls can afford.a small. contribution.) Like the pressure

gradient, this pressure difference consists of steady and pulsatile
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parts. On the other hand, the pressure difference.can change inde-
pendently of the pressure gradient; that. is, the mean pressure levels
at the blood flow channel inlet and outlet can rise simultaneously
as the body's.blood.pressure rises, thereby increasing the pressure
difference across the porous channel walls.while not affecting the
axial pressure gradient,

The dialysate flow may be driven by.a pump. or by gravity(zg).

It will be considered steady.



CHAPTER III

ASSUMPTIONS

The thin-film blood flow bounded. by. porous elastic walls en-

countered in artificial kidney design.is. of great complexity and

not. well understood. Consequently, in_ this flow. analysis a number

of assumptions and simplifications._must.be.made. These assumptions

and simplifications, however, should.be such as to retain the salient

features of the physical system.. With this. in. mind,.the mathematical

model for the flow will be as follows:

1.

Blood will be assumed: to be a.homogeneous, incompressible fluid
having a constant. viscosity.

This assumption. implies. that.the. effects of red cell sedi-
mentation and the outflow.of. watery.plasma. on. the red cell
concentration and hence. the blood.viscosity will be neglected.
Furthermore,. these. effects. will not be: appreciable provided
the shear. rate is everywhere. above. about 1;0'.sec:ond—1 (6) and
provided the total. outflow. through. the porous:walls is small
compared to.the blood. channel. inflow. /

The assumption also.implies. that. the: effects of channel
size on the viscosity of blood will not be: considered. Although
these effects are.possibly.significant, a proper accounting of
them would add an undue. complication. to:the present analysis.
Blood will be taken. to. be Newtonian.

This assumption is. a good.one.if. the shear rate is every-

where above about 100 seconds_l. See section 2.2.)
- 14 -
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(Hence, the minimum shear rate for which blood can be considered
Newtonian is much higher than. the . minimum shear rate for which
red cell sedimentation is negligible.)

The effects of flow. divergence. and. convergence from and to
interconnecting. tubes will. be neglected.

The flow will be laminar.

Effects of the gravitational body force will be neglected.

The flow at the channel inlet will be taken to be fully-devel-
oped.

This assumption is justified.on the grounds that the fluid

~at the channel inlet. has. already passed. through several meters

of slender interconnecting. tubing.

On the other hand, by no means. does the assumption imply
that the flow in the channel itself is necessarily fully-
developed. Flow through the porous. wall. can still be of such
extent that axial inertia effects become  important. For
example, large. suction at the walls can lead to a large decrease
in the axial mass flow and hence significant flow deceleration.
Mass transfer will have a negligible effect on the blood and
dialysate volumes.

In the unstressed situation (no flow; no blood-dialysate
pressure difference) the spacing between the porous channel
walls will be uniform and small. compared to channel length
and width.

The porous material backing. the membranes and the non-porous
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exterior plates with which this material is in contact are
together of such high flexural rigidity as to keep channel wall
deflections small compared to the unstressed channel half-~
thickness and to nullify the effects of membrane relaxation

and sagging.

One consequence of this assumption is that the rigidity
of the walls will be essentially that of the porous backing
and non-porous exterior plates, the rigidities of the membranes
themselves being negligible in comparison.

In addition, the smallness of channel wall deflections
compared to the unstressed. channel half-thickness implies the
smallness of channel wall deflections.compared to wall (porous
backing and exterior plate) thickness. This is because the
wall th;ckness can reasqnably be expected to be at least as
large as the unstresséd channel half-thickness (a few hundredths
of a centimeter.) More important, for deflections small com-
pared to wall thickness a linear theory of elasticity will be
applicable.

A means for estimating the wall flexural-rigidity required
to ensure sufficiently small. deflections-is given in Appendix B.

Although the wall thickness is at least as large as the
unstressed channel half-thickness, it will still be small
compared to the wall length and: width. Moreover, the wall
thickness will be uniform and constant.

Accordingly, thin-plate. theory can be used to describe the
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wall motions.

The channel walls will be considered purely elastic and
isotropic. Young's modulus and Poisson's ratio will be con-
stants.

The membranes will be of uniform permeability.

This assumption does not imply that the velocity of flow
through the. porous walls.need. as a. result be constant. In
general, this velocity can vary with position along the channel
since it depends.on the difference.in the normal fluid stresses
acting on the membranes on the. blood. and: dialysate sides. (The
difference in the normal fluid stresses can be a function of
position along the channel.)

The channel walls . will be simply-supported at the edges.

At the edges the wall displacement, therefore, is fixed
and the bending moment is zero.

The side walls, the walls.which span the membrane separa-
ration distance will be perfectly rigid and non-porous.

The dialysate flow will be in a direction opposite to that
of the blood flow; that is, a countercurrent flow situation
exists.

This is in. agreement with what is found: in actual kidneys.

The volume of the dialysate flow.region will be large
enough in comparison with that of the blood that the dialysate
flow is little affected by membrane porosity.

The dialysate flow will be fully-developed. at. the dialsate
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flow inlet.

Together with the preceeding one, this assumption indi-
cates that the dialysate flow will be.everywhere- fully-devel-
oped.

Viscous shear forces .acting on the.porous:walls caused
by the dialysate flow will be of the same.order:of magnitude
as, .or smaller than; viscous shear forces acting-:on these walls
caused by the blood flow.

In brief, it is felt that the mathematical model set forth by

these assumptions will .adequately represent the essential aspects

of the flow in a parallel plate artificial kidney blood.channel

away from the inlet and outlet. (Near the inlet and outlet the

effeets of channel divergence and-convergence beceme important.)

The .model should be particularly good, moreover, for the physical

‘situation in which the kidney-membranes are supported-by relatively

‘rigid porous material at-all points on:the dialysate:side. In this

instance the model will accurately describe the motions of the

channel walls-motions coupled to-the-flow. :Particular care must be

taken, however, that the-assumptions-concerning- the constant visco-

sity and the Newtonian:nature of blood be valid:. the .ratio of the

total outflow through the:porous-walls to:the channel inflow

should be small .and the.shear rate-should everywhere be above

-1

100 seconds .



CHAPTER 1V

Basic Equations and Boundary Conditions for the System

Because of the parallel plate geometry of the artificial kidney
blood flow chamnel being studied, use will be made of a. rectangular
- Cartesian coordinate system. The origin. of the coordinate system
will be located midway between the parallel membrane surfaces and
midway between the side walls at the inlet cross-section. The
x - coordinate denotes the longitudinal, or:axial direction; the y -
coordinate, the spanwise direction; the z - coordinate, the direction
normal to the membrane. surfaces, or normal.direction. Figure 7

illustrates the coordinate system.

4,1 The Flow Equations.

The equations describing\thehflowhare;expressions of two
.physical laws:. the local conservation of fluid.mass and the local
balance.betwée; forces applied to the fluid and the resultant

change in its momentum. The first of these. laws:is stated by the
continuity equation. In Cartesian coordinates and for an incom-

.. pressible fluid. this equation can be written

Ju oV oW _
ax T ay,.+ 3z = 0 4.1

where u, v and w are the components. of the fluid velocity vector in
the x, y and z - directions, reépectively.

- 19 -
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For a Newtonian fluid the second of these laws is stated by the
Navier-Stokes, or fluid momentum, equations. These equations can
be given as follows for a fluid of constant density and viscosity

subject to no applied body forces:

Jdu ]

[
-5
e
o8]
c

e Y ex YWy t ez T
2 2 2
f 9x 9y 9z
v 3 3 )
t + uuax + vvay + wwaz =
2 2 2
_1 %g+v3v+3v + v
Pg °Y ax2 3y 322
/
ow oW ow 9
o U ——— V == —— =
It uox v3y+ww8z
2 2 2
_ 1 %_1_’_+\),‘8w+ 8w+ 9w
Pg °2  9x2 ay? 3z2 ],

4.2

where P is the static pressure measured from some reference level .

pf is the fluid density, and v denotes the fluid kinematic viscosity.

Equations 4.2 are the local scalar equations of motion for the fluid.

Detailed derivations and discussions of the continuity and

27)

Navier-Stokes equations are given by Schlichting and Bird,
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Stewart and Lightfoot(é).

4.2 The Channel Wall Equations.

The equations describing the wall motions express Newton's law
in the three coordinate directions and can be obtained. from the

following thin-plate equations written in terms-of the coordinate

system of Figure 7:

aNx BNX
x ay toa = 0
aNx oN
_lax + —le + qy =0
2 2 2
Dv‘*nzqz+Nx3—ﬂ+N %0 4 9y gxg
3%x2 Y ay2 Xy y
q 0 5 an
% ox qy oy ’ 4.3

where n is the component of plate (or wall) displacement in the
normal direction (see Figure 8) and. where Nx’ Ny and ny, the
magnitudes per. unit length of the forces. acting. in the middle plane
of the plate, are functions of r and s, the axial and spanwise com-
ponents. of plate (or wall) displacement, respectively. 4y and qy
denote the two components of the tangential loading per unit area

. (dimensions. of pressure) of the middle plane: of the plate, while

q, denotes. the normal loading per unit area. D is the plate
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flexural rigidity, defined as

- E m3
D = IPEES) 4.4

’

where E is Young's modulus; o, Poisson's ratio; and m, wall
thickness.
In particular, for the physical system under study the quan-

tities:Nx, Ny, N_,» 9, and qy are as follows

Xy

E m or ds
Ny l—oz(ax +“ay)

. _Em for 3
ny T 2(1+0) ( y + g) 4.5
- Bu | 3w o
i = _uéz + x)* om 3 +qﬂ)
\ t
IV dw | 2
q = -yl + -pm - +
y (3 z ay.ly * 3t2 yD
‘ 2
¢ = P-ZD?V-) + pm 21 4.6
z zJ, 3¢2 ,

where u is the dynamic viscosity of blood; P, the wall density;
and 9% and qu » the components of the tontribution to the tan-
gential loading due to the dialysate flow. The quantities marked

with an asterisk are to be evaluated at the channel walls; that is,
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they are to be evaluated at

zZ= ih+n

But because plate (or wall) displacements are assumed small compared
to the unstressed channel half-thickncql. they can with the intro-
duction of little error be evaluated instead at
zZ= %h,
Substitution of equations 4.5 and 4.6 into equations 4.3, then,

gives the equations for the wall motions:

Em 3y 3%y Em_ f32r 323.
T-o% (2 *° 8x8y)+2(1+0) 2y * 3xdy
Y TR I L -0

LF . 90Xy 3¢2 xD

Em 32 3%y E m 32y 3%g
1 - o ay? + °axay * 2(1+0) | 9xdy + %2
[ 4 - pm azs+ =0

M\% Tay), TP T o

Em_ [3r 3s| 32n Em f3s , . 35320
+-—-—-2'1 + 0 + T - o2 3 +°3x
y ayz
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2
+9_w.)+pm3_§._q g_n 4.7
Y [« a2 yb} 9y .

A more detailed derivation and discussion of equations 4.3

and 4.5 is given by Timoshenko and Woinowsky - Krieger(34), Wang<37)
and Reissner(zz). Equations 4.6 follow from the definition of the
(27,4) (30)

fluid stress tensor and the use of d'Alembert's principle .

4.3 The Boundary Conditions.,

A complete statement of the mathematical problem yet requires
the specification of a number of boundary conditions. In the first
place, because fluid is lost through the porous walls, the energy
needed at successive channel positions to drive the flow decreases.
The axial pressure gradient must then diminish with position along
the channel, implying that the flow is not independent of the axial
coordinate and hence not fully-developed in the channel. Hence,
either the inlet velocity profile or the inlet axial pressure
gradient must be specified. If the latter is considered to be the

"driving force'" for the flow, one flow boundary condition will be
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3 v
- =B84l +z ta cos (nQt)
x =0 n=14"

+ b sin (th)] 4.8

where B is a negative constant representing that portion of the
entrance axial pressure gradient associated with the steady part of
the flow. The pulsatile, time-dependent portion is in the form of
the "Fourier polynomial," where the a_ and bn are constants assumed
known and Q is the angular frequency of the basic periodic oscilla-
tion. It can be shown that any continuous periodic function can be
approximated by such a finite Fourier polynomial. In fact, the
approximation will be the '"best' one in the mean square sense.

(See, for instance, Courant and Hilbert€8) Pps 68 - 69.)

The constant B8 in equation 4.8, further, can be expressed in
terms of measurable quantities. To begin with, the flow at the
inlet cross-section has been assumed to be fully-developed. The
steady portion of this flow, moreover, because of the smallness of
the unstressed channel half-thickness compared to channel width, is
approximately a two-dimensional Poiseuille flow. (All flow
properties and characteristics are essentially independent of the
spanwise coordinate over the bulk of the inlet.) And for such an
inlet flow the following relation is valid

6. -3 (_Q.?__E.)
4 lha ’
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where Q0 is the steady part of the axial flow rate at the inlet and
where £ is the channel half-width.

Next, the inlet pressure must be stated. As Kuchar and Ostrach
(14) point out, the flow situation in an elastic channel is quite
different from that in a rigid one. In the rigid channel case,
pressure gradients, as the driving forces for the flow, are of
direct interest. Howevgr, in elastic channel flow, pressure levels,
upon which the channel wall motions depend, are of importance as well.
Thus, while the inlet pressure is not of immediate concern in rigid
channel flow and need not be stated so long as the axial pressure
Adrop is known, this pressure must be given in the problem under

consideration. This pressure, taken to be uniform over the inlet

cross-section, will be as follows:

L [}n cos (n  t)

+ dn sin (n Q t)i} 4.10
N

where Po is that portion of the inlet pressure level due to the
steady part of the flow. The <, and dn are constants assumed known.
Other conditions which must be specified are the no-slip
condition at the walls and the porous channel condition. The first
of these is that the components of fluid velocity in the axial and
spanwise directions, evaluated at the channel walls, must be equal

to the axial and spanwise components, respectively, of the wall
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velocity. The second of these is that the normal component-of fluid
velocity, evaluated at the channel walls, must be equal to the sum
of the velocity of flow through the porous walls and the normal

component of wall velocity. The conditions are as follows:

o8]
2]

4.11

[~
PR
*

]
@
(a4

=
*
"
|&

4,12

Q
rr

wl* = iy + = 4,13

where wp is the local velocity of flow through the porous walls and
where the asterisks denote evaluation at the channel walls in the
manner described in Section 4.2,

In general, the local velocity of flow through the porous walls,
wp, can be considered to be proportional to the difference between
the blood and dialysate normal fluid stresses acting on the membranes

(29’13). It can also, however, have a contribution due to an osmotic

pressure difference across the membranes(29’13). Consequently,

The constant of proportionality “%z is the ratio of membrane perme-
ability ¢ to the product of membrane thickness m',APos is the os-

motic pressure difference,
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considered in this study a constant. PD denotes the dialysate pres-
sure. Because the dialysate flow is assumed to be fully-developed

and countercurrent, this pressure can be taken to be

(APD)
PD=PDi - (L - %) /) 4,15

where PDi is the pressure level at the dialysate inlet; PD’ the
dialysate pressure drop along the channel length; and L, the channel
length itself.

As for the boundary conditions:on the wall motions, the channel

walls have been assumed to be simply supported. (no.bending moment)

at the edges. This assumption gives the.conditions

" = 0 4,16
e

i

an [, =0 4,17

where N is the direction normal to the wall edges and where the sub-
script "e" denotes "at the edges.”" Also, if the walls are under no
tension when not deformed in the normal direction and if the edges

are not deformed when the walls are deformed, the conditions on the

axial and spanwise components of wall displacement can be given as

r 0 4,18
|e
s| =0 4,19
e
Although an unsteady problem is being considered; initial con-

ditions are not required. This-is because the umsteadiness is in

the form of a periodic oscillation and thus .involves no transients.
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In the special case of steady flow, the boundary conditions on

the fluid pressure and velocity components become

3

2% = 8 4.20
x=0

Flooo "o 4.21

“I* =0 4.22

"|* =0 4.23

"’|* =, 4.24

This flow case prevails when the elastic bloodstream-to-blood
channel interconnecting tubes are of such length as to damp out most
of the pulsatile portion of the blood flow before it reaches the

channel inlet.

4.4 Summary.

The continuity equation 4.1, the Navier-Stokes equations 4.2,
and the channel wall equations 4.3, subject to the specified boundary
conditions, describe completely the assumed porous, elastic channel
flow. The equations, moreover are a system of seven partial differ-

ential equations in seven unknowns. The unknowns include the three
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fluid velocity components, u(x,y,z,t), v(x,y,z,t) and w(x,y,z,t),
the fluid pressure, P(x,y,z,t), and the three components of wall
displacement, r(x,y,t), s(x,y,t), and n(x,y,t). These equations
are consistent with the mathematical model set forth in Chapter III.

It can be seen that in general coupling exists between the
blood flow described and the dialysate flow and between the blood
flow and the channel wall motions. The latter coupling is such,
however, that the blood flow is dependent on the wall motions only
through the boundary conditions on the three fluid velocity compo-
nents. In contrast, the wall motions depend directly on the flow
through terms in the wall equations of motion.

In addition, the flow has been taken to be three-dimensional.
This may appear surprising since it has been assumed that the
unstressed channel half-thickness is small compared to channel
width and that normal wall displacements are small compared to the
unstressed channel half-thickness. On the other hand, the spanwise
component of wall velocity can drive flow in the spanwise direction
in accordance with the no slip condition at the walls. Also, it has
not yet been shown that the velocity of flow through the porous
walls is independent of the spanwise coordinate. Thus, in general
the flow depends on all three coordinate directions.

In the steady flow case, the case for which solutions will be
sought in this analysis, the flow will later be indeed shown to be

two~-dimensional.




CHAPTER V
DERIVATION OF SIMPLIFIED GOVERNING EQUATIONS

5,1 Introduction

In Chapter IV a system of seven partial differential equations
in seven unknowns was shown to describe the flow and associated wall
motions, The unknowns are the three fluid velocity components,
u(Xy¥y2yt)y V(Xytyzyt) and w(x,y,2,t); the fluid pressure,
P(x,ys24t); and the three components of wall displacement, r(x,y,t),
s(x,y,t) and n(x,y,t), It is immediately clear, however, that the
system of equations and boundary conditions is extremely difficult
to solve exactly, The Navier-Stokes equations, for instance, have
nonlinear inertia terms, while the wall equations include products
of the derivatives of unknowns, Then, too, the wall equations are
coupled to the flow equations both directly and through boundary
conditions, It is thus desirable to make simplifications where
justifiable and to seek some approximate solution of the system of
equations,

To this end, a formal simplification technique -~ the nondimen-
sionalization and ordering of the system of equations and boundary
conditions - will be used, This will be employed in conjunction
with a formal perturbation solution of the system of equations,

The equations and boundary conditions will be rewritten in dimen-
sionless form, each of the unknowns and independent variables being
replaced by the product of a dimensionless quantity and a character~

istic value for the unknown or independent variable,

- 31 -
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The dimensional characteristic values appearing in the equations and
boundary conditions will then be grouped in such a way as to produce
dimensionless parameters, Each of these parameters, which will
possess definite values from the physics of the problem, will exws
press the importance of one type of force or effect in the flow or
wall motions relative to another, Since these parameters will appear
multiplying nondimensional terms or groups of terms of unit order,
ordering the parameters with respect to powers of the perturbation
parameter (yet to be chosen) will indicate the importance of certain
terms in the equations and boundary conditions over others, The
less important terms can then be neglected, at least in the equations
of zeroth order in the perturbation parameter, Hopefully these
latter equations, while retaining the physical essence of the proba
lem, will lend themselves much more easily to solution,

One advantage of this procedure is that it will show under
what physical conditions certain of the terms really can be neglected,.
Another is that, unlike reasoning from a strictly physical view=
point, the scheme gives, through the ordering of the parameters, an
estimate of the error incurred by the neglect of higher-order (those
other than the zeroth) solutions,

One the other hand, care must be taken that terms involving
the highest derivatives of one of the unknowns are not neglected;
Otherwise, all boundary conditions on that unknown can no longer be
satisfied and error may be introduced in the solutions near bound-

aries,
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5,2 Nondimensionalization of the Equations and Boundary Conditions

for the System

Because the flow and wall equations and the boundary conditions
are in general interdependent, they will be nondimensionalized
simultaneously, Dimensionless variables will be introduced by the

following transformations:

x = Lx u=Uu P = PP

y=2y ve VYV re=rf

zw hz we W s =r.s

t=Tt¢t wp-wpwp n-non 5,1
Pp = PpyPp

where L, %, and h are characteristic values for the flow channel
length, half-width and unstressed half-thickness, respectively,

T is the period of one heart pulse, Characteristic values for the
axial, spanwise and normal velocity components are denoted by U,V
and W, respectively, Wp, on the other hand, is an estimate for the
velocity of flow through the porous walls and because of wall une
steadiness in the normal direction is, in general, different from
the characteristic quantity W, PDi and P° are characteristic

values for the dialysate and blood pressures, Finally, r_ and no

")
are characteristic values for the axial (or spanwise) and normal
components of wall displacement, Numerical values for these charac.
teristic quantities are given in Section 5,3,

The characteristic axial wall displacement r, has been used as

the characteristic spanwise wall displacement also, This can
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readily be explained. To begin with, because the channel walls in
the unstressed (no flow) state are subject to no stretching, any
stretching that does .occur in .the stressed state must be such that
the axial and spanwise. components of wall tension are. of the same
order of magnitude.. Hence,.it can be expected.that the axial and
.spanwise components..of wall displacement are.of the same order of
magnitude.

Now, substitution.of. the transformations 5.1 into boundary
conditions 4.11 and.4.12 and.wall.equation 4.7a and grouping dimen-

sional quantities to form dimensionless parameters gives

-l (ro) 3;
v =lesr] — 5.2
x  \VT1 5%
W A A=
wl = (ﬁp-)& + (ﬁ) 2 5.3
* ° 3t
2 2_ 2 _ 2 2
(0o g oy 2
Ix Xy 3y 9xJy
Lot (B) (L) () (2 L (BEymy o
° r | \E - th /|1 -
o 9z 9x .
, 2 a2
= (1-0) (—”7) 2L 5.4
ET ot

where use has been made in equation 5.4 of the assumption.that the
dialysate viscous stresses on the walls are of the same order of
magnitude as, or less than, the blood viscous stresses. Equations

5.2, 5.3 and 5.4 can now serve to give relations among certain of
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the characteristic values. These relations will aid in simplifying
the nondimensionalization procedure.
First, because flow in the spanwise direction is driven by wall

motion in that direction, the two terms in equation 5.2 must be of
the same order. Thus, the parameter (;%Q can be set equal to unity.
This gives a relationship between the characteristic fluid veolcity
in the spanwise direction-V, on the one hand, and the characteristic

axial wall displacement r, and ‘the period of one heart-pulse T, on

the other: ro
V= (T) 5.5

As- for the two terms on the right hand side of equation 5.3 nothing
can immediately be said-about their relative importance. However,
the sum of these two terms = and hence the sum of the parameters
appearing in.them - must be of unit order. Setting :the sum of the

. parameters (Eﬁ)and (jé)equal to unity, then, leads to the following
relation bet:een thewzharacteristic normal - £luid velocity W, on the
one hand, and the characteristic-velocity of flow through the porous
wallsuwﬁ, the characteristic normal wall displacement ﬂo, and the

. period of one blood pulse T, on the other:

n
W=W +=2 5.6
P

T
The physical significance:of equation 5.6 is that the characteristic
normal .fluid velocity consists of a part due to wall porosity and a
part due to:wall .unsteadiness. Depending-on .the particular situation

encountered, one or the other of these contributions may predominate

Thirdly, in equation:5.4 the magnitude of the fourth term is
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determined by the dimensionless group

a - (&) ({:;) (%) _
Now, since viscous stresses drive the wall motions in the axial and
spanwise directions and since inertia effects can be expected to be
small compared to viscous effects, the leading wall displacement and
viscous stress terms of this equation should be of the same order,
namely unity, As a result, the dimensionless group (1 - 02)(;1)
x(f—')(if) can be set equal to one, This gives a relationship be-
tw:en the characteristic axial wall displacement r, and other, more
easily measured quantities :

r, = (1 - 02) (;E') (%}ITJ) L 5.7

Further, combining relation 5,7 with 5,5 yields

s (@)

If equations 5,6, 5,7 and 5,8 are now used together with the
transformations 5,1 and if, in addition, the symbols - @ and R
are employed to denote the dimensionless groups (%hlli) and(g—l‘\ ( .5
respectively, the continuity, Navier-Stokes, and wall equations ’can
be written in dimensionless form as follows :

2 e (e @ 6§

3y
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dz dy dy
* *
5.11
Similarly, the boundary conditions can be written
- 6 i
9.1:’. =_(:—P-I-‘- 1+ Z [ancos (2nll t)
ax o R=]
x=0
+b_sin (2 nlﬁﬂ 5.12
- k _
P| =1+ z ¢ cos (2 nlt)
x=0 n=]1
+d_ sin (2 nnE)] 5.13
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u|* (1-0") (m) (Eh) (U‘I‘) (L) " 5.14




5.15
5.16

ala

5.17
5.18
5.19

where
and
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n| = 0 5.20
e

az‘g

o = 0 5.21
Ele = 0 5.22
§|e = 0 5,23

These equations and boundary conditions indicate that the

significant nondimensional parameters for the system are

B ) k)
—- frw)(ﬂ—)(—)(—)

APm PDi APo s) 4 APD
P i P ’ P P )
o o o o
All of these have physical meaning. The parameter o is Poisson's

ratio; (%) ,» the ratio of channel half-width to wall thickness;

(%g) » a measure of the importance of viscous shear forces compared

to elastic forces; (-U-'%) , the Strouhal number, a measure of the
importance of fluid unsteady effects compared to fluid inertia

effects; (%) , the ratio of channel half-width to length; «, a
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measure of the importance of the flow through the porous walls com-
n
pared with the axial flow; (g‘o-) , the ratio of the characteristic

normal component of wall displacement to the unstressed channel half-
thickness; _922_ » the Euler number, the ratio of pressure to
fluid inertiapfgrces; R, the modified inlet axial flow Reynolds
number, a measure of the importance of fluid inertia forces compared
with viscous forces; (%) » the ratio of unstressed channel half-

thickness to channel length; (%) , the ratio of the unstressed

2
channel half-thickness to the half-width; (p_&_z_) , 4 measure of

the importance of wall inertia to wall elastingorces; (;_g) , a
measure of the importance of pressure to wall elastic forces; (-%L'- s
the ratio of the absolute. value of the inlet axial pressure gradiZnt
to the inlet pressure divided by the channel length; -f;ﬁl- , the

o

ratio of the maximum. total. across-membrane pressure difference to

P
the inlet blood pressure; —-E—j‘) ,» the ratio of the dialysate
o

AP
pressure at the dialysate inlet to the inlet blood pressure;( 03

P b4
o
the ratio of the osmotic pressure difference.to the inlet blood
AP . )
pressure; and (—1;—) » the ratio of the dialysate. pressure drop to
o

the inlet blood pressure.
In particular, the parameter a can be interpreted as the ratio
‘ W _h
of a Reynolds number for the flow through the porous walls, —s— R

to the modified inlet axial Reynolds number, R; that is

)
moar - |




- 43 -
As such, this parameter is a measure of the relative importance of

(%) ()] nes spectar

significance as a measure of the relative importance of wall un-

the porous wall and axial mass flows.

Also, the dimensionless group

Q =

steadiness in the normal direction to the flow through. the porous
walls. Hence, the group describes the relative importance of the
terms on the right-hand-side of boundary condition 5.16. (Note that

this group depends on the parameter a.)

5.3 Derivation of Simplified Governing Equations and Boundary

Conditions.
The values of the various nondimensional parameters for a modi-
fied Kiil kidney can be deduced from characteristic data taken from

Billmeyer (3), Cole, Pollard and Murray(7) (18)’
(42) (10)

s.Merrill and Wells

(29)

McDonald » Sachs and Funck-Bretano

Freeman, Maher and Schreiner(AO). The data: is as follows:

, Sparks and Wilcox,
L = channel length = 111 cm.
£ = channel half-width = 10 cm.
h = unstressed channel half-=thickness
= 2,0 x 10-2 cm,
T = period of one blood pulse = 0.8 sec.
U = characteristic axial blood velocity
= 1.56 “"/sec.
W _ = maximum velocity of flow through the porous

walls = 1.7 x 107 M sec.
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inlet blood pressure

12.5 x 10% dymes, 2

characteristic normal wall displacement

2 x 10-3 cm.

dialysate pressure. at dialysate inlet

6.4 x 107 dynes; 2

dialysate pressure drop

5 x 104 dynes/cmz

maximum osmotic pressure difference
1.0 x 10% 9yRes; 2

absolute value of the inlet blood axial pressure
gradient

3.28 x-10° dymes, 3

maximum total pressure difference.across the
membranes

1.0 x 10° 9ymes; ;2

dynamic viscosity of blood

4.2 x 10-'2 8% cm-sec.

density of whole blood

1.06 gm/cm3

Young's modulus for polypropylene walls
l.4 x 1010 dynes/cmZ

Poisson's ratio = 0,3

wall density = 0,905 gm/cm3

wall thickness = 4.63 cm.
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Certain of the above values, however, do not appear explicitly
in the literature cited. Instead, they are estimated from other flow
and wall information. (See Appendices A and B.)

This data yields the following values for the significant non-

dimensional parameters:

2
c=20.3 —9-“-) = 1.01 x 102
ET
)
=2 = 8.93x 10
uu\_ -10 E
(Eh) 2.34 x 10
L - -
(E'r')' 80 (TL) = 0.262
[o]
) -2
(L)- 9.07 x 10 (Apm)
—2] = 8.0
o = 5.5x 1072 Py
&
—1'1' = 0.1 P .
—P-; = 0.512
P
0 4
(—-—I—Jz) = 4.85 x 10
pf APOS
R =1.58 x 102 P = 8.0
h -4
(L) = 2,0 x 10 APD
P = (0,78
2.0 x 1073 bi

(3

Since the modified inlet Reynolds number R governs the impor- -
tance of axial fluid inertia effects and also is small compared to
unity, a perturbation solution of the nondimensional equations and
boundary conditions will be sought using this Reynolds number as the

perturbation parameter.. The other parameters appearing in the
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equations and boundary conditions, then, will be ordered, for the
case under study, with respect to powers of the parameter R. The
ordering, moreover, will be such.that a parameter will be considered
to be of order i in R if its value lies between Ri_;s and Ri+%.

For instance, a parameter of order zero in R will be ane whose value

s (36),

- 1
lies between R * and Rﬂ. (See, for instance, Van Dyke

The ordering of parameters other than R in powers of R is as

8-

follows:

51
=
(X)
—_——
o=
e
]
(w]]
]

g g~
Hh
(e} [o]
>-]]
7-"|
-

()2

Po _
<] = F R 5.25

—
]
ol
)

Parameters other than R not appearing above are also all of order
zero in R. (The ordering given by equations 5.25, of course, is
valid only for the value of R associated with the problem under
study. Thus this ordering need not be the same in other problems
and for other values of R.)

Next, solutions of the seven unknowns will be sought in the

form
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el
[
[+
+
[
=
+
el
=
+

o 1
_=-+_ e o o 0
w Wb w1 R +
P=P +P R+ " "°""°
o 1l
r= to + rl R +
s-‘so+is+
n-n°+n1R+ 5.26

The barred quantities on the right-hand sides of the above relations

are all independent of the parameter R but still dependent on the

other parameters of the problem.
Now, substitution of transformations 5.25 and 5.26 into the
nondimensional flow equations for the system (equations 5.9 and 5.10)

and collecting terms of like powers in the parameter R gives

5.27
- 2 _
oP 3 u
s O )
B— - —™>
9x 9z
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3P %
3 U
+§—__]-"----_'zl R+ .. . = ()
ax' 2z
[_ oF, _9F,
B/ *+ |B SR+ =0
oy | 9y
[ oF B 2F,
B—| + |B —|R + ... =0
0z L oz

5.28
Since the unknowns in each bracket of terms above are indepen-
dent of the parameter.R, each bracket.must.be. separately equal to

zero in order for the equations.to be.valid.for.all values of the

equations are the following:

du n ow
o . .0 L [s)
= + ‘{a + ( h)(U’I‘)} oz = (. 5.29

X
- 2~
_ apo ) uo
B — - 2 = 0
Bx 02
)3
—2 =0
9x
9P
2 =0 5. 30
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In a similar manner the zeroth-order in R wall equations and

boundary conditions can be shown to be

2 3y 2g oT 28
(%) — + 0({')*3‘:'9:+1“2~9' a—:§-+(%) -
9x Ixdy dy 9xX3y
aﬁo
-l -1 =0
9z *
2 2- 2~ 2 2=
8 so L d ro 1l-0 L 3 0 L 4 so
— + o(T — + T — *(1 - =0
3 9x9 9xdy 9
- - [ T
. 3 n, . 2, ", 3 n
BT, e e
(L) %" A 3y
P
2 L h L =
12Q1- o )(j) TL (E) ﬁi:'g) Po 5.31
3P h)
—:9 = - :%L) 1+ Z a, cos (2nit)
X o n=]1
x=0
+ b sin(znnE)] 5.32
k
s . afiE
P |x=0 1+ nzl ¢ cos (2nHt)
+d sin(ZnHEi) 5.33
u

o =0 5.34
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v o8,
* 3t
) ()
- 1 - a \h UT on
ol 1+-1-n—°) —L) F 1+1l")L °
a \h UT, a \h J\UT 5.36
P P AP
= o 5 Di| 5 oS
s (AP {Po (P ) ) +( P >
m o} * (o]
5.37
o = 0 5.38
e
a2.
n('J
— = 0 5.39
IN
e
r =0 5.40
(o]
e
s =0 5.41
o .
e

Equations 5.29 through 5.41, then, are the simplified governing
equations and boundary conditions.for.the problem under considera-
tion. Their structure is such that the wall motion is always coupled
to the flqw. However, in the steady (pulse period T = =), non-
porous (flow velocity through the porous walls wp = 0), rigid wall
(flexural rigidity [ =) case, the equations reduce to those for
fully-developed channel flow. Their relation, to. the porous channel

(2)

equations of Berman will be discussed.in.the next section.
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The solution of these equations provides a solution to the prob~
lem under study accurate to the order of the perturbation parameter

R.

5.4 Comparison of the Nondimensional Flow Equations and Solution

Scheme with the Equations and Scheme of Berman.

() and a number of other
(28, 39, 31, 32, 33, 43, 44, 45) have previously

As pointed out in Chapter I, Berman

investigators

studied flows in porous, rigid channels. It would be particularly
interesting to compare their basic equations and solution methods
with the equations and scheme of this study. However, because the
work of these investigators is based on the approach taken by Berman

(2)

s such a comparison need only be made with Berman's studies.
o “’Iﬁ‘iﬁé‘fi?ét'SIaeé?'cﬁé’fiab‘E&héiibﬁg‘aﬁa‘bdaﬁdaf§'daadiEIoﬁE*
of this analysis reduce to Berman's for steady (pulse period T = =),
rigid channel (flexural rigidity D = ), two-dimensional. (channel
half-width £ = »), flow in which the velocity of flow through the
porous walls, wp,.is independent of the axial and spanwise coor-
dinates (wp = constant). Hence, while the flows described in the
two studies are somewhat similar, they do have important physical
differences.

A more fundamental difference lies in the choice of perturba-
tion parameter. (Both analyses seek perturbation solutions of

relevant equations.) Berman, on the one hand, uses a Reynolds

number based on the flow through the porous walls, R B’and solves the
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case for which this Reynolds number is small compared to unity. In
the present study, however, the modified axial flow Reynolds number
R, is used. This is advantageous in that it shows clearly that for
a wide class of flows in porous channels the importance of axial
inertia effects depends on the latter Reynolds number, not one
based on the porous flow. (See equations 5.10). For example, for
values of the modified axial flow Reynolds number small compared to
unity, axial inertia effects in these flows can be neglected. To
the contrary, in Berman's scheme, in which the smallness of the
modified axial flow Reynolds number compared to unity is a tacit
~assumption, axial inertia forces can be neglected only-in the ab-
.sence of flow through the.porous walls.

Berman's porous wall solutions, which include inertia effects,

are, of course, valid even when the Reynolds number R is éma1147
compared to unity. But, at least to zeroth order in. the modified
axial Reynolds number, the use of .the full Navier-Stokes equations
(including nonlinear inertia terms) is in this.case unnecessary.
In fact, in Section 6.3 it will be shown that the general steady
flow solutions of the simplified equations obtained in the last
section reduce to Berman's for the case of constant velocity of
flow through the porous walls.

In addition, one important consequence.of the fact that non-
linear inertia terms can be neglected in this situation is that
major mathematical.difficulties are removed-in the solution of slow,

viscous. flows in porous channels for which the velecity of flow
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through the walls is not a constant. Solutions of these-flows are
now possible when this velocity is, for example, a function of the
pressure field. Such is the case in the problem under study.

Another fundamental difference between. the. two.analyses is that
. .the importance of wall porosity effects is shown here.to be governed
by a second parameter, a , the ratio of Berman's Reynolds number to
the modified axial flow Reynolds number.. (See equation 5.24). This
second parameter is implicit in Berman's solutions, but it is given
no special significance.

As a Reynolds number ratio, .this parameter is, moreover, a
measure of the importance of the flow through the porous walls com-
pared to the axial flow. And since in the .present study the para-

meter a is assumed to be of ‘order unity or less, the simplified

equations derived are not limited only to situations in'whiﬁh thé
mass flow through the porous walls is small compared to. the axial
mass flow. In fact, for a velocity:of flow through the .porous.walls
.independent. of .the.axial and. spanwise coordinates and for a value of
this parameter equal to unity, the inlet flow will just balance the
flow through the porous walls. For values of this parameter greater
than unity the channel will empty.

A special situation arises, however, when the absolute value of
the parameter o is larger than unity. (This is possible for either
large injection or large suction of fluid at the porous .walls). In
this case the importance of axial inertia forces is governed not by

the modified axial flow Reynolds number, but rather-by the product



- 54 -

of that Reynolds number and the Reynolds number ratio. Consider,

for instance, equation 5.10a rewritten for steady flow:

- - P -
R du + aw i: = - R( -——%— i:
% 9z pcU X
f
2_ - 2_
+(1_1_)2 du (Q) 2%u 3 u
-2 -2 -
L ox 2 3y 3z 5.42

It is clear from this equation that at least one.of the axial inertia
terms is now of order R [al » not of order R. (The other axial
inertia term may also be of order R lal. However, this cannot be
shown- from the ordering used-in the present problem.)

Moreover, the product of parameters R o, as.it turns out, is

.exaetly Berman's Reynolds-number-for the-flow through the porous

. walls. The obvious implication'is*that'in'thismfléw situation the
flow through. the porous walls-is-of greater:importance than the
axial flow. Axial inertia-effects-are then sensibly: important re-
-gardless: of how small the-modified:axial: Reynolds namber may be.

- Furthermore, in. this-case-the~extent of importance.of these effects

is governed by the parameter'Rﬁ.' A set of equations like Berman's ,

which retains inertia terms, must be solved. Hence,.while-Berman's

equations unnecessarily keep inertia terms for small values of the
parameter RB other investigators: are correct:ih.using.these‘equations
to obtain solutions for-large: (in absolute value) values of the para-
meter RB' (In the*lattgr'situation‘the'reciproca1~of'RB is used as

‘the perturbation parameter.)




- 55 -

Phenomena associated with flow unsteadiness and channel wall
elasticity are also introduced here. Although the mathematical
model is such that the flow is largely independent of the wall mo-
tions, but the wall motions are dependent on the flow, the simpli-
fied equations and boundary conditions permit an investigation of

the effects of wall porosity on the normal wall displacement.

In the unsteady situation, moreover, the flow is shown to be
coupled to the wall motions through the wall boundary condition on
the normal fluid velocity component. The importance of this coup-
ling - in the form of wall unsteadiness in the normal direction -
relative to wall porosity effects is governed by the parameter
{i' (22) (—LX}, a combination of the porosity parameter a, the

o h} \UT |
— .—  _ratio of_the characteristic normal wall displacement Ny tothe un- Aﬁ

stressed chamnel half-thickness h, and the Strouhal number. (See

boundary condition 5.36).

In short, it is felt that the parameters of this analysis give
greater physical insight to porous channel flows than those used by
Berman. First it is made clear that axial inertia forces need not
always be important. In particular, in flows with finite wall poro-
sity for values of the porosity parameter 1less than or equal to
\ order unity, these forces are shown to be negligible for values of
the parameter R small compared to unity, The simplified equations
’ and boundary conditions obtained are valid for this case. (See
Appendix C for further comments on the above).

Secondly, it is pointed out that other investigators have been

correct in using Berman's equations to obtain solutions for large
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(in absolute value) values of the Reynolds number RB'

5.5 Summary.

The simplifications arrived at in determining the final equa-
tions of the last section have physical significance.. In the first
place, the flow has been shown to: be two-dimensional to first order
in the parameter R; the spanwise fluid.velocity component is zero
to this:order, while the pressure: field and axial: and.normal fluid

" velocity components-are. independent:of: the spanwise coordinate.
This is' a consequence both-of the smallness of the unstressed channel
half-thickness: compared: to-channel.width and of the smallness span-
wise wall unsteadiness.
-~~~ -~ ———Secondly, the pressure: field- has-also-been- shown- to" be indepen-
dent' of the normal coordinate, to first' order-in- the  parameter R.
This results from the smallness- of: the:unstressed- channel half-
thickness compared: to- channel length: - Hence;. the pressure.field is
a function of the axial. coordinate alone.

As for the wall motiaon, it is apparent.that, to first order in
the parameter R, the normal component of wall displacement can be
solved for independently-of the axial and spanwise components of
wall displacement. No coupling exists to this order.between the
normal and the other components. ' This:is largely- a. consequence of
the .dominance. of wall bendingrforceS'over'forceS'arising.from pure
extensions or-wall-stretching  due to~fluid viscous: shear at the

walls.

Y .
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A determination of the axial and spanwise components of wall
displacement, on the other hand, involves the solution. of two simul-
taneous linear partial differential equations.

Next, fluid inertia forces have been shown to be unimportant
to first order in the Reynolds number R. (This has been discussed
in the last section).

The neglect of viscous terms. in the zeroth-order in the para-
meter R normal fluid momentum equation, on the. other hand, indicates
that the normal component of fluid velocityat.the:.channel inlet
cannot “be specified. Ideally, because the flow at the inlet is
assumed to be fully-developed, one would:like. to .specify this velo-

city component to be zero at the inlet. But this cannot be done

unless the full Navier-Stokes equations are . used.. Therefore, the

normal component of.fluid:velocity'will'take*ontsome.nonezero distri-
bution at the inlet and the zerothe=order equations-will be somewhat
in error  very near this: location. This-error, however;: is standard
"in many- analyses' of' fluid flow in-channels with low aspect ratios,
Then, too, since: the:unknowns.of the'flow are:independent of
the spanwise: coordinate: to- first-order-in-the' parameter-R, boundary
conditions cannot be satisfied for the axial- and normal. fluid velo-
city components .at the non<porous-side wallsj; that is, -these velocity
components cannot be made:to vanish at' the side-walls.: However, the
solutions for the flow are: valid  away from these walls.
Finally, the zeroth-order flow equations.and boundary conditions

can be seen to become: uncoypled from the wall motion for steady flow.
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In fact, were it not for the coupling with wall unsteadiness in the
normal direction provided by the boundary condition .at.the porous
walls on the normal fluid velocity component, this.would be: true for
unsteady flow as well. The importance.of such coupling.relative to

wall porosity effects is governed:by the dimensionless group

(A @1




CHAPTER VI

Steady Flow in a Porous Elastic Channel for Modified Inlet Axial

Reynolds Numbers Small Compared to Unity.

The simplified governing equations derived in the previous
chapter (equations 5.29 through 5.41) will now .be solved for the
steady flow case (blood pulse period.T = »), This flow case physi-
cally corresponds. to the situation in which several. feet of body-to-
kidney interconnecting: tubing is used.. Because of:.tube elasticity,
such lengths of tubing tend to '"damp out" the.pulsatile portion of
the blood flow.

The axial and spanwise.wall.displacement.components, however,
will not be solved for. . In.the. first .place,.the normal wall dis-
. _placement component.is.of much greater interest. —Secondly, the — — —
information known concerning. the axial and spanwise wall displacement
components is incomplete.. _Apart from an.order.of magnitude, nothing
is known about the dialysate flow contribution.to.the viscous shear
stresses. acting on the walls

6.1 General Solution for the Flow.

The velocity components and pressure.will now be solved for
exactly, First, equations 5.29, 5.30, 5.36.and.5.37 combine in the

steady case to.give (zeroth-order.subscripts omitted)

1 l2h
+
]

CLAN | 6.1
9z

- 59 -
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€1

I Po = PDi = APos
L) Pl ) e 6.3
m o o

Integrating equation 6.2 and making use of boundary conditions 5.34

for steady flow results in

- - dl_’ _ 2
u = %B (f dx) 1-2z ) 6.4
Equations 6.1 and 6.3 then become
1 d’p 1 -3
w=- 5= B (—:;) (z -3z ) 6.5
dx

__!._ E dz}—) ) [¢) § - PD}. i; T A—Psé -
3a - AP P D P 6.6
dx m o o
Equation 6.6 is an ordinary differential equation for the dimension-
less pressure P, Once it is solved, the axial and normal velocity
components can be obtained from relatioms 6.4 and 6.5.

The solution of equation 6.6 is

P = C, sinh N ox + C, cosh Yy x
P_. AP
Di\ s _ 0s
L, - (2
o )

where ?D is a linear function of the dimensionless axial coordinate

(See equation 5.18) and where Cluand C2 are constants to be deter-
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mined from the inlet conditions on the pressure and pressure gradient.

The parameter Y is defined as

P
y = _3% (73%’) 6.8
B m/ *

Making use of the transformation 5.25 b, however, the constant B can

be eliminated from the above expression. This gives

2
o .U P
3a £ 0
R(P )(AP). 6.9
(o] m

The parameter Y can be seen to be simply a modified version of the
Reynolds number ratio © .
Further, from boundary conditions 5.32 and 5.33 for steady flow,

it can be shown that

/AP

1 f=BL} —
¢ = - P)
Y o
. = I_C’_Di_)J, (ﬁ)(ﬁ?_@) . (A_En_,)
2 P P P P
(o] (o] (o]

—-I-,-l-’-) 6.10

o

Ve

o 6.11

Substituting relations 6.10 and 6.1l into equation 6.7 now gives the

dimensionless pressure drop:

P_Po - - (;gg) sinh /i_ X
P

6.12
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Finally, with the aid of equation 6.12, the dimensionless axial

and normal velocity components can be written

6.13

6.14

The spanwise component of velocity has not been solved for

since it is smaller than order one in the perturbation parameter R.

6.2 General Solution for the Normal Wall Displacement.

The solution of the normal wall displacement.equation (equation
5.31) subject to appropriate boundary conditions yields the dimen-
sionless wall displacement, ;n.,vas a function.of the axial and
spanwise coordinates. °

To begin with, the wall boundary conditions: (equations 5.38 and
5.39) are satisfied if.the. dimensionless.wall displacement is taken

.to.be the Fourier series
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1 n=1 Zmn sinml x sin n N(y+0.5) 6.15

The coefficients Zmn’ yet to be determined, are such that equation
5.31 is satisfied.

(37) has evaluated these coefficients for the case of a

Wang
thin plate subjected to an arbitrary loading - one dependent, for
instance on both the axial and spanwise coordinates. His result,

adapted for the problem under consideration, is

3

e L e 0 B

m +n

x [ J P sinm I x sin n I(y + 0.5) dxdy
6.16

If now, the expression for the dimensionless pressure (equation
6.12 plus unity) 1is substituted into the above equation and the

integration carried out, the coefficients Zmn become

3
i = 4( - cosnl) 12(1- oz)(;&) (_3)

- =
m mn{4(%)2m2+ nz} II6

~BL APD /{ cos m Il
I3 )Y\ iR
o o ﬁﬁ' 2+1




AP
+ [=m st /y_cos m I
P 2
© +
—*Jl cos m II 6.17
The normal wall displacement, then, is given by the Fourier

series 6.15, with coefficients determined by equation 6.17.

In an artificial kidney, however, thie actual wall boundary
conditions may very well be more nearly those of a clamped plate
(zero displacement and zero first derivative along the normal to th:2
edges at the edges) than those of a simply-supported one. (The

actual condltlono, as is the case in nost nhvalca] sxuuatlons, are

'extremes.") But a solution of the

ones somewhat between these two
nermal wall displacement equation for clamped plate conditions is
extremely difficult to obtain at the preseat state of our knowledge
(34,41) . c e . . . .
« One particular difficulty is that no eigenfunctions exist
vhich satisfy both the governing wall equation and the clamped
. (41) . . . .
plate conditions . The fact that the wall loading is anot uni-
form adds further complications. Hence, such a solution has not
been sought here.
On the other hand, the wall displacenents obtained for simply-
supported conditions, larger than tiie more constrained ones which

would be obtained using clamped conditions, can be considered to e

upper bounds on the actual deflecticns.
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6.3 Limiting Cases of the General Solutions.

Two limiting cases of the flow and wall solutions obtained in

this chapter are of particular interest.

CASE A

First, when the pressure difference across the membranes is
large. compared to pressure variations in the flow field, the velocity
of flow through the walls assumes a nearly constant value. Mathe-

matically this is stated as:

AP AP
m =-BL D -

(P > > (—P——)+ (—P— =0 (1), 6.18
o o o

AP
where '—FE is the ratio of the characteristic pressure difference
o
~———-—-—-—-—across_the membranes to the inlet blood pressure, ng is the ratio
S T == o - - ——— - _ _ _

of the inlet axial pressure gradient to a characteristic non-porous

AP
channel axial pressure gradient, and (—§2>is the ratio of the dialy-
o
sate pressure drop to the inlet blood pressure.

Now, for values of the Reynolds number ratio. o of order zero

AP
in the parameter (——15 » the order of the modified Reynolds number

P
o

ratio Yy is given by

P, \, P,
= 0,399 e = 0 N 6.19
m m

L
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Condition 6.18 together with the above ordering, ther, leads to the

following limiting case of the general solutions:

P-Po . -BL . APm ;2
P P T\ )Y
(o] [o] (o]
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-8L m
o] o

The flow solutions 6.20 are equivalent to Berman's zeroth-order
solutions for a constant velocity of flow through the porous walls.
Thus it is clear that Berman's solutions are a special case of the
results derived herein,

The wall displacement 6.21 is that of a simply-supported plate

under a loading quadratic in the axial coordinate.

CASE B

A second interesting special case arises. when the ratio of the
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total outflow through the porous walls to the inflow is small com-

pared to unity. Mathematically this can be stated as

y <<1, 6.22

where Yy is the modified Reynolds number ratioc. Condition 6.22

results in :

cle
(]
(M P
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4(l-cos nll)

n
T = z Z 2\ 2 20 2 6
o m=1 n=1 mn {4(—1:) m 2+ n} Il

3
X 12(1 - 02) (ﬁﬂ (%5(%2{;2)} (l-cos mll)

+ (:B—I-'> cos(mll) 6.24

P
o

Equations 6,23 describe the well-known Poiseuille channel flow, but
with finite, though negligible, wall porosity. Hence, Poiseuille

channel flow is the limiting case of the general flow solutions of
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Section 6.1 as the modified Reynolds number ratio y tends to zero.
Equation 6.24, further, describes the deflection of a simply-suppor-
ted plate under a hydrostatic loading.

According to the values ascribed to. the various.parameters in
Section 5-3, y has in the problem of this.study the value

y = 2,2x 1072 < < 1.

Consequently,this limiting case describes: well the flow situation

in present Kiil kidneys.




CHAPTER VII

Discussion of Results.

In the previous chapter dimensionless mathematical expressions
have been found for the fluid pressure, velocity components, and
the normal wall displacement. These solutions, in general form,

are functions of six dimensionless parameters: %3 the dimensionless

axial coordinate; ﬁ, the dimensionless normal coordinate; y , the
modified Reynolds.number ratio;.G:%L ), the. ratio of.the inlet axial
pressure gradient to a characteristzc»noneporous,channel axial pres-
sure gradient; (5;2 , the ratio of the characteristic pressure dif-
ference across theomembranes.to.the,inlet,bloodﬂpressure; and (522> ,
the ratio of the dialysate pressure drop to.the inlet blood preszare.

The behavior of the solutiens-will now .be examined as each of these

par;mé;é;;nigv;iisgéaﬁzgu;5§§zﬁﬁilé“fﬁéfUtherSTafefheld7consta,§3777
The fixed values of the :various parameters used are, with one excep-
tion, in agreement with the values of these parameters determined in
Section 5.3. The one exception is the modified Reynolds number
ratio vy, for which a value of 0.2 has been employed. Such a

value has been chosen.in. lieu.of the.much smaller actual value of
this parameter for Kiil kidneys.in order to indicate the effects of
wall porosity in future kidney designs for which.y is not necessar-

ily small compared to unity. (but still somewhat less than unity).

First, Figures 9 through 13 portray the dimensionless axial

o UZ\/ P
velocity. component %(—g—-—)( --B-%) % as a function of the above six
o

parameters. This velocity component can be seen to be locally para-
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bolic in the normal coordinate. However,. its mid-plane value decays
exponentially with the axial coordinate, reflecting the fact that
the axial flow slows .as fluid mass.is.lest.through the porous walls.
The profiles of Figure 9, therefore, are non-similar ones, in agree-
ment with the fact that: the velocity of flow.through the porous
walls has been allowed.to.depend on the:pressure field.

The extent of the decay of the. dimensionless. axial velocity

AP
component, moreover, increases.as.the parameters y , (ﬁ#g) and
AP o
cir) are increased.since increasing. these.parameters_has the effect
o

of augmenting the effects.of wall porosity and. decreasing the axial
mass. flow. On the other hand, .the extent. of.decay decreases as the
parameter (:%g), is.increased. This is. because enlarging the latter

o
¥—777777,,,,_Wpagaggggg‘ipcreases“theAaxial.flow rate and hence exposes the fluid

for,shorter.times_to:thedeffects;of;w;ii éé;;;i;;iii
From the flow solutions, .it .can be seen that in.the limit as
the ratio of the total flow through the porous-walls to the inlet
flow tends toward zero. (y *+ 0), the uniform. Poiseuille velocity
profile results. (See Section 6.3).
Secondly, Figures 14 through 18 illustrate the effects of these
same. six. dimensionless..parameters.on. the. dimensionless normal velo-

city component, This. velocity component .is. locally cubic in

v
W-pl
the normal component. Further, since its value at the. porous walls
can be observed to decay expementially with the axial coordinate,

the profiles of Figure.1l4, like those of Figure 9, are non-similar.

However, unlike the situation in the case of:the axial velocity
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component, the extent of this decay decreases as.the parameters y ,

APm APDR ) ' ' -BL
(jg—) and (-5—) are increased and increases.as the parameter (-Er)
o o o

is made. larger.. The explanation.for this.lies_in the fact that as
the total. amount of fluid passing. through.the.porous channel in-

APm APD
creases ( v, (—E—\ , Or _E;—)' increasing) relative. to the amount
o o

of fluid. entering. the channel, less.and:less of the entering fluid
need be driven the entire channel:length. Energy losses - and hence
the axial pressure drop - diminish. As a result,-the local pressure
and hence: the_normal velocity component, which:depends. on the local
pressure, decreases to.a lesser .extent. .The:opposite, however,

occurs as the parameter (-—E,-I*) is increased.

o
Next, Figures.l9 through 22 indicate the effects of varying
P-P

the various parameters.on.the dimensionless. pressure drop, P = .
o

Like the velocity.components,.the pressure drop, too, decays expo-
nentially, but in such a.way that . the total. pressure drop is less-
ened. (The dotted.curve of Figure 20, for.example, corresponds to
that for_a,non-porous,channel,flowwand.is“the;lowermbound for the
other. curves.). The dependence: of the extent of decay. on the various
parameters, however,.is.of. course, .similar .to:that for the normal
velocity compone;t.

It should be.particularly.noted from:Figures 21.and 22 that,

for the range of.the parameters .examined)varying the parameters

P P
o o

drop. Hence, this pressure drop is. largely independent of these

AP AP
——E) and (——2) has _little_effect on .the.dimensionless pressure

dimensionless quantities.
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2
The dimensionless normal wall displacement ) 13?1%52—3 (%)

n
X(*%) (%) (FE) %— , evaluated at /% = 0, 1is illustrated in Figures
ol o

23 and 24, This wall displacement is primarily pressure driven, a

fact reflected in the dependence of this displacement on the local
pressure; that is, while. the normal wall displacement satisfies the
boundary conditions for a simply-supported plate, away. from bounda-
ries it closely parallels the pressure field. 1In particular, the
effect  of increasing: the - modified- Reynolds. number ratio. y is to in-
crease wall displacements somewhat downstream (where:the:pressure
is most affected.by the: cumulatiwve effects.of wall porosity). (For
comparative purposes, the dotted:curve of Figure 23:illustrates the

limiting case as vy tends to.zero). .0On the other hand, larger values

of the ratio of. the absolute: value. of.the.inlet: axial pressure gra-

dient to the characteristic non=porous channel: axial pressure

gradient, (:%L) ,» leads. to dimished displacements somewhat down-
o

stream.
Although the dimensionless-normal. wall displacement also depends

on the parameters (f;;E) and (5;2) . o-the variation. of .this displace-~
ment with these paramZters'is:negligible:and\has,-therefore, not

been depicted. This:is because, inasmuch: as: the parameter Yy must
‘be restricted to: values: small compared to. one: (0.2 in.these figures),
the degree of blood. pressure ~-dialysate pressure: coupling is small,

(See, for instance, Figures 21 and. 22). Hence,.the dependence of

P P

AP AP
. D
the normal wall displacement: on: the: parameters (T—E) and (——-)
o o

can be expected to be small.
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Finally, the curves of Figures 9 through 24 are, strictly
speaking, valid only for a homogeneous fluid. They are meaningful
for the non-homogeneous blood flow under consideration only to the
extent to which the total flow through the porous walls is small
compared to the inlet flow;.that is, they.are meaningful to the ex-
tent to which the Reynolds number:ratio g, and hence the modified
Reynolds number ratio Y, is small compared.to unity.

Small values of.the parameter &, moreover, lead:.to the second
limiting flow case: described. in Section 6.3. In:this case, the
effects of wall porosity:.on:the:.flow: are negligible.and:the axial
velocity. component.and the:pressure:field-become. thoge for Poiseuille
channel flow. The normal.velocity component, however, remains

"coupled. to. the. local:pressure: and-takes on: a. linear. variation in the

-axial coordinate.

Large osmotic pressure: differences,:. on. the.other. hand,. can lead
to the first limiting case:of.Section 6.3. .In: this. situation the
velocity of.flow through: the: porous.walls. approaches:.a constant
value all along the.channel. and flow solutions equivalent.to Berman's

result.



CHAPTER VIII

CONCLUSIONS AND SUMMARY

The general nature of flows in porous elastic channels for
which the ratio of unstressed channel half-thickness to channel
width and length is small has been delineated. A mathematical mo-
del has been chosen which assumes an incompressible, homogeneous,
Newtonian fluid in laminar flow. The channel walls are uniformly
porous, Hookean elastic thin plates. Further, the flexural rigidity
of the walls is such that normal wall displacements are small com-
pared to the unstressed channel half-thickness.

In particular, conditions are given for which the analysis
applies to the thin-film blood flows encountered in parallel plate
"~ — — — artificial kidneys. Such flowsare generally bounded by flexible,
somevhat porous membranes. However, it is assumed here that the
membranes are supported by material of relatively high rigidity
'in such a manner that the membranes and this material together com-
prise porous, elastic channel walls. In the light of recent re-
search trends, such an assumption can be expected to be a reasonable
one for future kidney designs.

The most general, time-depedent equations and boundary condi-
tions describing the flow and channel wall motions have been formu-
lated. (The flow is.time-dependent inasmuch as it is driven by
the pulsatile arterial-venous pressure gradient.) These equations
and boundary conditions have then been simplified by means of a

formal nodimensionalization and ordering of the terms appearing in
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the equations followed by a perturbation solution . in the modified
axial Reynolds number. The result has been a gystem of linear
zeroth~ order (in the above Reynolds number)equations in which inertia
terms are absent.

More important, the simplification procedure has made it clear
that inertia effects are unimportant for a wide class.of flows in
porous channels. The importance of such effects in these flows is
governed by the modified. inlet axial Reynolds number, (%?? X (%) 2.
And when this Reynolds number is small compared.to unity, as is the
case in the problem which has. been considered, inertia effects can
be neglected. This conclusion cannot be deduced from present work
in the field of porous channel flows.

The relative importance of the total flow through. the porous

walls compared to the axial flow has.been”shownrto depend on a
second parameter, o, the ratio of a Reynolds number for. the flow
through the porous walls based on unstressed-channel half-thickness
(a Reynolds number used in other work) to the modified inlet axial
Reynolds number. When the parameter o. is of unit order, wall
porosity significantly affects the axial flow. However, when a is
small compared to unity, small deviations from Poiseuille channel
flow result. (A modified version of the parameter.a, a dimensionless
group denoted by y, has actually been used herein).

For values of o larger than unit order, inertia. effects cannot
be.neglected no matter how small the modified inlet.axial Reynolds

number may be. Equations found in existing work in porous channel
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flows must then be used to obtain correct solutions for. the flow.

In pulsatile, porous elastic channel flows, further, the rela-
tive importance of wall. unsteadiness in the. normal direction to wall
porosity in determining the boundary condition on.the .normal velocity
component at the channel.walls . has.been shown to.be.described by the

parameter { (_n_o_) _I_,_)-‘%)where a is the Reynolds number
h UT

n
ratio, (¥f9 is the ratio of the characteristic normal wall displace-

Q |-

ment to the unstressed channel half-thickness, and (%?) , 1s the
well-known Strouhal number.

Although valid for time-dependent flows, the.simplified govern-
ing equations and boundary conditions have been solved for the sub-
case of steady flow. This flow situation is.a meaningful one for

artificial kidneys which make use of several feet of_pulse-dampening

elastic,iﬁterconnectiﬁg tubing.

General.solutions have been obtained. for the. dimensionless
axial and normal fluid velocity components,.the.dimensionless fluid
pressure, and the dimensionless normal wall.displacement. These
solutions indicate.that all but.the last.of these. quantities decay
exponentially with. the. dimensionless axial: coordinate.. The extent
of the: decay depends. upon. the magnitudes of. the various. flow para-

AP
. m
meters. .It was found, however, that the parameters (———) , the

P
o
ratio of the characteristic. pressure.difference across the-artificial
AP
kidney membranes. to. the inlet blood pressure, and..(fsg) ,. the ratio
o

of the dialysate pressure drop.to the.inlet blood pressure, have a

negligible influence. on the. dimensionless .pressure. field. and the
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dimensionless normal wall displacement.

As for the dimensionless normal wall displacement itself, the
magnitude of this displacement is somewhat increased downstream as
the Reynolds number ratio .o is increased. The magnitude of this
displacement, however,decreases markedly as the parameter (:§L>,

P
o

the ratio of the absolute value of the inlet axial pressure gradient
to a characteristic non-porous channel flow axial pressure gradient,
is enlarged.

Two limiting cases. of. the general solutions have heen.discussed.
The first of these describes what happens.as pressure variations in
the flow field become small compared to the reference. pressure: the
velocity .of flow through the porous walls approaches a constant

value.and flow solutions equivalent to those found in the litera-

ture‘fdr,ﬁhis case result., .In aﬁ artificiai kidney‘this fiow situa-
tion corresponds to the use of large osmotic pressure differences
across the porous membranes.

The second points out that Poiseuille channel flow.results as
the ratio of the total flow through the porous walls to the inlet
flow tends to zero (a »> 0). This case is of interest.in present
artificial kidneys, in which the parameter o is finite but small
compared to unity. 1In this application, the axial flow is indepen-
dent of the wall porosity. However, the dimensionless normal velo-
city component is still coupled to the axial flow.

The integration of this velocity component over the wall area,

moreover, yields the ultrafiltration rate. (Ultrafiltration is the
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desirable loss of excess blood fluid through. the porous membranes).
This rate is then known as a function of various flow. parameters.
The general solutions obtained, it must be kept. in mind, while
valid for all values.of o for. a homogeneous fluid, are valid for
artificial kidney blood flows.only to the extent to which o 1is
'small compared to unity...For large values of a u(a.hgfeater than
about ‘0.1 to 0.2) blood can no-longer-be -assumed ‘to- be. homogeneous.
The present work has described-the. nature and effects of wall
porosity in flows in porous,.elastic channels: for which: the un-
stressed: half-thickness is:. small compared-to.the other channel
dimensions. It has determined and discussed.the significant dimen-
sionless parameters governing the flow. field.and the:normal wall
displacement. In particular; the analysis: has been-applied to the
blood: flow .in. parallel plate- artificial: kidneys.. .A better. under-
standing of this: flow-has resulted-in the light. of: new knowledge
obtainedAconcerning—theraxial'ahd:normal:velocity:camponents, the
pressure field, and, for kidneys of the type discussed in Section
2.1, the normal wall displacement. Such a better understanding can
provide guidelines. for optimizing-ultrafiltration,.minimizing the
effects .on. the flow of wall displacement, .and, therefore, designing

improved. artificial kidneys,



10.

11.

12'

REFERENCES

A.L. Babb and L. Grimsrud, "A New Concept in Hemo-
dialyzer Membrane Support,”" Trans. Amer. Soc. Artif.
Int. Organs, Vol. X, p. 31, 1964.

A.S. Berman, "Laminar Flow in Channels with Porous
Walls," Journal of Applied Physics, Vol. 24, p.
1232, December 1953.

F.W. Billmeyer, Jr., Textbook of Polymer Science,
Interscience Publishers, New York and London,
p. 502, 1962,

R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport
Phenomena, Wilev WNew York, 1960.

L.W. Bleumle, Trans. Amer. Soc. Artif, Int. Organms,
Vol. IX, p. 71, 1963,

S.E. Charm, W. Mc Comis, and G. Kurland, "Rheology and
Structure of Blood Suspensions," Journal of Applied
Physiology, Vol 19, p. 127, 1964.

J.J. Cole, J.L. Pollard, and J.S. Murray, 'Studies on
the Modified Polypropylene Kiil Dialyzer," Tranms.
Amer. Soc. Artif. Int., Organs, Vol. IX, p. 67, 1963.

R. Courant and D. Hilbert, Methods of Mathematical
Physics, Interscience Publishers, New York, 1962.

W.G. Esmond and H. Clark, "Mathematical Analysis and
Mass Transfer Optimization of a Compact, Low Cost,
Pumpless System for Hemodialysis (Dialung),' Biomedical
Fluid Mechanics Symposium (proceedings), ASME, New York,
p. 161, 1966.

R Fahraeus and J. Lindquist, Am. Journal of Physiology,
Vol. 95, -. 562, March, 1931.

L. Grimsrud and A.L. Babb, '"Optimization of Dialyzer
Design for the Hemodialysis System," Trans. Amer.
Soc. Artif. Int. Organs, Vol. X, p. 101, 1964.

G. Kareman, ''Some Contributions to the Mathematical
Biology of Blood Circulation. Reflections of Pressure
Waves in the Arterial System," Bulletin of Math.
Biophysics, Vol. 14, p. 327, 1952.

- 79 -




- 80 -

13. W.J. Kolff, "Outline of Internal Organs,” Trans. Amer.
Soc, Artif. Int. Organs, Vol. IX, p. 380, 1963.

14, N.R. Kuchar and S. Ostrach, "Flows in the Entrance
Regions of Circular Elastic Tubes,' Master's Thesis,
Case Institute of Technology, Cleveland, June 1965.

15. E.F. Leonard, "Large-Scale Hemodialysis: Engineering
and Economic Considerations," Trans. Amer. Soc. Artif.

Int. Organs, Vol. XI, p. 26.

16. E.F. Leonard and L.W. Bluemle, "Engineering in Medicine:
Design of an Artificial Kidney," Trans. N - Y Acad.
Sciences, Ser., 11, Vol. 21, No. 7, p. 585, May 1959,

17. J.Ludwigson, '"Portable Artificial Kidney is Research Goal,"
The Plain Dealer, p. 6, Wednesday, April 6, 1966.

18, E.W. Merrill and R.E. Wells, Jr., "Flow Properties of
Biological Fluids," Applied Mechanics Reviews, Vol,bl4,
No. 9, p. 663, 1961.

19. G.W. Morgan, ''On the Steady Laminar Flow of a Viscous
Incompressible Fluid in an Elastic Tube," Bulletin of
Mathematical Biophysics, Vol. 14, p. 19, 1952.

20. G.W. Morgan and W.R. Ferrante, "Wave Propagation in
Elastic Tubes Filled with Streaming Liquid,”" Journal
of Acoustical Society of America, Vol. 27, p. 715, 1955,

21. G.W. Morgan and J.P. Kiely, '"Wave Propagation in a
Viscous Liquid Contained in a Flexible Tube," Journal
of the Acoustical Society of America, Vol. 26, p.323,1954.

22. E. Reissner, "On Some Aspects of the Theory of Thin
Elastic Shells," J. Bos. Soc. of Civil Eng's,
Vol, 42, p. 100, 1955.

23. G. Rudinger, "Review of Current Mathematical Models for
the Analysis of Blood Flow," Biomedical Fluid Mechanics

Symposium, 1966.

24, A.H. Sachs and D.E. Abbot, "An Analytical Study of the
Relationship between Blood Pressure and Arterial Wall
Displacements,'" Vidya Report, No. 40, Vidya, Inc.,
Palo Alto, California, 1961.

25. A.H. Sachs and D.E. Abbot, "Determination of the Physical
Constants Relating Blood Pressure and Arterial Wall
Displacements," Vidya Report No. 65, Vidya, Inc.,




26.

27.

28.

29.

30.

31.

32,

33.

34,

35.

36.

37.

- 81 -

Palo Alto, California, 1962.

C.E. Sachs and J.L. Funck-Bretano, 'Stretching of the
Dialysis Membrane: A New Device for the Treatment of
Chronic Nephritis (Preliminary Report)," Trans. Amer.
Soc. Artif., Int. Organs, Vol. IX, p. 79, 1963.

H. Schlichting, Boundary Layer Theory, Fourth Edition,
McGraw-Hill, New York, 1960.

J.R. Sellars, "Laminmar Flow in Channels with Porous
Walls," Journal of Applied Physics, Vol. 26, p. 489, 1955,

R.E. Sparks, Proposal for, A Research Program Leading
Toward a Wearable Artificial Kidney, Case Institute of
Technology, Cleveland, 1966.

J.L. Synge and B.A, Griffith, Principles of Mechanics,
McGraw-Hill, New York, 1959.

R.M. Terrill, "Laminar Flow in a Uniformly Porous Channel,"
The Aeronautical Quarterly, Vol. XV, p. 299, Aug., 1964.

R.M. Terrill, "Laminar Flow in a Uniformly Porous Channel
with Large Injection," Aeronautical Quarterly, Vol. XVI,
p. 323, November, 1965.

R.M. Terrill and G.M. Shrestha, 'Laminar Flow through a
Channel with Uniformly Porous Walls of Different Permea-
bility," Applied Scientific Research, The Hague, Vol.
15, Section A, p. 440, 1966.

S. Timoshenko and S. Woinowsky -~ Krieger, Theory of
Plates and Shells, Second Edition McGraw-Hill, New York,
1959,

S. Uchida, '"The Pulsating Viscous Flow Superposed on

the Steady Laminar Flow of Incompressible Fluid in a
Circular Pipe," Zeitschrift fur_angewandte, Mathematik
und Physik, Vol. VII, p. 403, 1956

M. Van Dyke, Perturbation Methods in Fluid Mechanics,
Academic Press, New York, 1964,

C. Wang, Applied Elasticity, McGraw-Hill, New .York 1953.




38.

39.

40.

41.

42,

43,

44,

45,

- 82 -

J.R. Womersley, "An Elastic Tube Theory of Pulse
Transmission and Oscillating Flow in Mammalian Arteries,"
WADC Technical Report TR 56 - 614, Wright Air
Development Center, 1957.

S.W. Yuan, "Further Investigations of Laminar Flow in
Channels with Porous Walls,". Journal of_Applied Physics)
Vol. 27, p. 267, March 1956.

C. Wilcox, R.B, Freeman, J.F. Maher, and G.E. Schreiner,
"Comparison of Physical Pronerties and Permeability of
Six Cellulose Membranes,'" Trans. Amer. Soc. Artif.

Int., Organs, Vol. XII, p. 44, 1966.

D. Young, '"Bending of Clamped Plates," J. of Applied
Mech., p. A - 254, Sept., 1947,

D.A. McDonald, Blood Flow in_Arteries, Edward Arnold
Publishers, LTD., London, 1960.

E.R.G. Eckert, P.L. Donoughe, and B.J. Moore, 'Velocity and
Friction Characteristics of Laminar Viscous Boundary Layer

and Channel Flow Over Surfaces with Ejection or Suction,"
NACA TN 4102, 1957.

W.E. Wageman and F.A., Guevara, ''Fluid Flow Through a
Porous Channel,! Physics of Fluids, Vol. 3, No.6,
Nov.- Dec., 1960.

B.W. Knight and B.B. McInteer, "Laminar Incompressible
Flows in Channels with Porous Walls," LA - DC - 5309,
Los Alamos Sci. Lab., 1965.



APPENDIX A

DETERMINATION OF CHARACTERISTIC DATA FOR THE. FLOW VARIABLES AND

CHANNEL HALF-THICKNESS NOT GIVEN EXPLICITLY.IN THE LITERATURE.

The selection.of characteristic data.for.the. fluid velocity
components, pressure drops,  and chanmnel: half-thickness in the blood-
handling circuit of a modified Kiil artificial kidney is by no means
straightforward. One difficulty, for example, is that no accurate
measurement of the actual: mean-blood: film.thickness (hence, mean
channel thickness) has yet been made. (Because the membranes are
subject to sag and relaxation, ''mean' thicknesses will be spoken of.)
Thicknesses given in the literature are nominal ones based on the
spacing between the ribs of:one-of the ribbed parallel plates and
those of the other. These.thicknesses:do.not take into account mem-
brane sag in the between-rib spaces and hence are on the small side.

Another difficulty is that certain of. the characteristic flow
quantities.do not.appear.explicitly in._the. literature and must be
estimated from other data:. These quantities.include. U, the charac-
teristic axial velocity component; WP’ the.characteristic velocity
of flow through. the. porous-walls; - B, the absolute.value of the
inlet axial pressure.gradient- for: steady flow; APD, the dialysate
pressure drop; and'APm,;thetinlet.acrOSSvmembrane.pressure differ -
ence,

To begin with, a better-estimate.for.the mean channel half-

-

thickness can be made. Cole, Pollard and Murray( ) give the
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(1)

nominal membrane half.spacing as 0,0057 cm, Babb and Grimsrud
on the other hand, have determined that the ratio of the actual to
theoretical volume of a modified Kiil blood flow channel is about
5,3; Hence, one would expect that a more reasonable mean channel
half.thickness h is given by
h= 5,3 x 0,057 cm,
= 0,030 cm,

In this analysis, however, a slightly conservative value of 0, 02Ccm
is actually used,

Next, estimates for certain of the characteristic flow quanti.
ties  can be made, First, the characteristic axial velocity compo-

nent is given by the following Poiseuille flow relation:

U= 3 %

2 (2v) (2n) A1
where Q, 1is the inlet flow rate, £ is the channel half.width, and
h is the unstressed channel half.thickness, (In our idealized mow
del of the channel, the mean half.thickness will be the actual half.
thickness,) Now, according to Sparks ( 29),

Qo = inlet flow rate per flow channel
(four channels)

= 50 cms/min
Using this value for the quantity Q, and the values for the charac-
teristic dimensions ¢ and h given in Section 5,3, it is found from
equation A,l1 that

U= 1,56 cm/sec.
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Secondly, another Poiseuille relation (equation 4,9 can be
used to obtain - B, the absolute value of the inlet axial pressure

gradient, in terms of known quantities:

3
-8= 37 TV nd 4.9

It is found that 2
-8 = 3,28 x 10
(Since for values of the porosity parameter a small compared

to unity the blood flow pressure drop is given approximately by

ZBL = 3.6 x 10° dymes, .2

4

where L is the channel length, and since Cole, Pollard and Murray
observe the actual blood flow pressure drop to be 3;0 X 104
dynes/cm 2, in good agreement, the choice of half-thickness h used
in determining the quantity’Q B)can now be seen to be a good one;)

Thirdly, the dialysate pressure drop APD is not really known
for a dialysate flow channel composed of porous material, However,
it has been assumed that dialysate flow viscous shear forces acting
on the channel walls are of the same magnitude as or less than viss
cous shear forces acting on these walls caused by the blood flow;
Hence, for values of the porosity parameter o small compared to
unity, it is reasonable to expect that

AP, =& (- L)

D

2

dynes/cm ,

= & (10"
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where L is the channel length, given in Section 5,3, as 111 cm,

In this study a value of 5 x 104 dynes

/em? is actuall& used for the
quantity APD.
Fourthly, the characteristic across.membrane pressure differ.-

ence, APm’ can be calculated neglecting normal viscous stresses

from equation 5.19. ’

where Po is the inlet blood pressure, PDi is the dialysate pressure
at the dialysate inlet, APD is the dialysate pressure drop, and

APos is the osmotic pressure difference across the membranes; Using
the value for the pressure drop APD just given and the values for
the quantities P, Ppy andAP presented in Section 5,3 it is found
that

6 dynes o
APm =1,0x 10 fem 4,

Further, in the absence of an osmotic pressure difference, a much

smaller value results:

5 dynes
Ap = 2
Pm 1,0 x 10 /cm

Finally, the characteristic velocity of flow through the porous

walls, wp, can be determined from equation 5,19

wp - ﬁ. (¢e,) , 5,19

-

where ¢ is the membrane permeability, m~ is membrane thickness,

and APm is the characteristic across.membrane pressure difference,
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(29 )

Sparks gives the membrane permeability ¢ as

4
: -1
¢ = 5,5x 10 en / sec - dynes

And Wilcox, Freeman, Maher and Schreiner give the membrane thicke

ness m° as

«3
m° = 9,9x 10 om,

Thus,
Wp = 5,5x10 -6 M/sec,
in the presence of a maximum osmotic pressure difference, while
«7 om
W = 5.5 x 10 [sec

P
in the absence of such a pressure difference,

The former value agrees well with that obtained by dividinng

the maxiamum ultrafiltration rate in a Kolff kidney, 20 cem /min,

29
( 29), by the total membrane: area, 20,000 cm ( ):

3
20 en /min X 1 min

6 cm
= 17 x 10 /sec,
20,000  ° 60 sec,
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APPENDIX B
CHARACTERISTIC VALUES FOR THE NORMAL WALL DISPLACEMENT AND THE

WALL THICKNESS

Assuming the deflections of the channel walls can be treated by
a linear thin-plate theory, the maximum normal deflection of the
walls, Nys if the walls are subjected to a uniform loading 4, is

given by (37

L
K q  (20)
n = —_—3
Enm » 5.1

where § 1is the'channel half-width, E is Young's modulus for the
walls, m is wall thickness, and K is a constant which depends on
both the wall boundary conditions and the ratio.of channel (or wall)
length L to width 2%2. In particular, for simply-supported boundary
conditions and the length-to-width ratio of this problem, Timoshenko

and Woinowsky - Krieger(34)

give the constant K as
K=0,142 ,

Now, if the ratio of the maximum normal wall displacement n, to
the unstressed channel half-thickness h.(this ratio must be small)
is taken to be 0.1 (n = 2.0 x 10 =3 tm.) and if the loading q is
. conservatively taken to be:the inlet blood pressure Po’ equation

B.1 becomes an equation which can be solved for the wall thickness

m; that is, equation B.l can be written

4
3 10 K P0 (22)

Eh
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The value of wall thickness m given by equation B.2 is that re-
quired to keep normal wall displacements smaller than the specified
fraction of the unstressed channel half-thickness h. This is the
value of wall thickness to be used in this study.. For the given
value of the constant K and for the values of the.quantities Po’ 2,
E and h presented in Section 5.3, this wall thickness is found to be
m= 4,6 cm,
Equation B.1l, also, tacitly assumes that Poisson's ratio for

the walls is 0.3.
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APPENDIX C
A FURTHER NOTE ON THE RANGE OF VALIDITY OF THE SIMPLIFIED

EQUATIONS OF THIS STUDY
= (2)

Berman's solution for the axial velocity .component u can be
written in the form
ﬁ-(l—ai){(l—zz) + Ry £; (2)
2 _ ,
+ RB f2 (z) +--- ;} . c.1

where the notation of this study has been adopted and where the
functions fl,f2 - - = = = - describe higher - order corrections to
the zeroth-order solution. However, since

RB = Ra,

according to Section 5.4, equation C.1 can:be expressed as

-2 -
u = (1-o0ax%) i>(l -z ) +(R a) fl(z)
2

+ ) £, +- - - -3 : .2

Note that inertia effects are absent in the zeroth-order terms of
both equations C.l1 and C.2, but appear in the first - and higher -
order corrections. Equation C.2, then, suggests a more general
condition for which axial inertia effects can be neglected and for
which the simplified equations of this study are valid:
R |af << |, c.3
Condition. C.3 includes the situation for which axial inertia

forces can be neglected described in Section 5.4.as.a special case.

This condition, also, appears to be verified by the form of
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the solutions of the simplified equations of this study to first
order in the parameter R (for steady flow for which.the velocity of
flow through the porous walls, wp, is a constant). For example,

the axial velocity component u is given by

u =(1-a§){(1-§2) +Rgl(a,'z‘) + ----},
where
gl (G, ;) = QGI (;) . C.5

Hence, equation C.4 can be written

T = (L-a% {(1_;)2+ (Ra) G, (2) +--?.

C.6.
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FIGURE 2. KOLFF KIDNEY (KULF)
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PARALLEL PLATES

FIGURE 3. KIIL KIDNEY (KEEL)
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STIVM TINNVHD
dHL 40 INIWATA NV 40 INAWAOVIASIA J0 SININOAWOD °8 TINOId

- 100 -

Sy (Y



101 -

19~ a w
1 dv dv

% 40 SANTVA SOOTHYVA ¥0d SITIJ0¥9d ALIDOTIA

°a °a 1%
$z°0 = ltp sz°0={-%] ‘0'1 = A.I

QNQO = »

ain1d TVIXv

‘6 MINOI4

0°1 8°0

%0

Nl



- 102 -~

o] (o] (o)
$2°0 = Tml.v.mu.o - Tmtv.o.ﬂ - ng

dv d
4 40 SANTIVA SNOTWVA dod dNVId~AIN 1V ININOJWOD ALIDOTHA QINTd TVIXV ‘0T FANOI1A
0°1 8°0 .M 9°0 Y0 z°0 0
i I | l 0




- 103 -

Om 0& °m
. —— €Cre = | - €y o = <
20 = |g 01 ps V 2°0 = TL

, av av
40 SANTVA SNOTYVA ¥O4 ANVI4-IK IV ININOAKOD ALIOOTIA QINTd IVIXV °TT TWAOLd
01 8°0 3 9°0 %0 2°0 0
T T 2°0

| ]

=N

cle




104 ~

YA

-O“

o o (]

?mﬂ ‘sz°0 = (7=} ‘0 = & 4
av av

10 SINTVA SNOI¥VA ¥O4 ANVIA-GIN IV ININOAWOD ALIDOTAA QINT IVIXV *2T fuNold
9°0 70 z°0 0

0‘1

8°0

!

X

| ] ] 0

=N




%d x °a

$2°0 = ,Hlmuv 0T =\g=| ‘zo=vil —

dv dv

40 SANTVA SMOTHVA ¥04 ANVIA~GIR IV INANOGWOD ALIDOTIA QINLA TVINV “€T TUNOI
0°1 80 3 9% 90 20 0
T T T T 0

%0

- 105 -

9°0

8°0

0°'1




- 106

20
o * d o 3 o
ST°0 = ﬂhml .MN.O = %..l aO.H = mﬁh 7°0 = A .“HM
av \ dv

40 SINTVA SNOTIVA ¥O0d SATIJ0Ed ALIDOTIA AINTL TVIRION T TiN91d

0°1-

0'T
0°1-

0°'T

N|.c



om om om
mN.o .Aldv .mN.o- A,..lv .o.a -Allv
Am amq amq

A 30 SINTVA SNOIYVA dOJd TIVM IV ININOAWOOD XALIDOTIA QINTA TVWION °ST T¥NOIJ

0'1 8°0 9°0 %0 ch
| T

I

- 107 -

?°0

9°0

8°0

0°1

2] =°



- 108 -

hom { om \ Om
d = Y . = A —
0°T pa V 2°0 . Aum-w

ST°0 = j——
qu dv
J0 SANTVA SNOIYVA ¥0d TIVM IV INANOJWOD ALIDOTIA dINTd IVIMON *9T TINOId
0°1 8°0 m 9°0 %°0 Z°0 0
T T T T 0




o
° 2} d

* = llml ¢ * = lhl ! A = A w
620 o= 6C°0 qu ¢'0 = "av
40 SANTVA SNOTYVA Y04 TTIVM IV ININOAWOD XIIDOTIA dINTId TIVINION °*/T MINOIA
0°1 8'0 9°0 %2°0 ¢'0 0
] 1 | | 0

- 109 -

==



(o]
%4 °d «IJ
. = ——t—— ¢ . =  E———— ¢ b = »
$Z°0 Tm- 0°1 2°0 d

w

av
dv
JO SANTIVA SNOIYVA ¥0d TIVM IV ININOJWOD X1IDOTdA AINTd TVIMON °8T WINIIA
T
0°T 8'0 % 9°0 %°0 z°0 0
T I T I 0

- 110 -

3‘3




> O

0

[¢]
0= (o) 5o (G o - (e
dv dv
A 40 SANTVA SNOTYVA ¥04 NOILNEIULSIA TINSSAYd  *6T TANDIL
1
0°1 8'0 % 9°0 7°0 ¢°0 0
| |

- 111 -

£°0

d-d



0°T

G20 = .

a

dav

V mOAmMDA<> SNOI¥VA Y04 NOILNGIYISIA FUASSTYd °0T7 TINOId

]

9

0

. d
.oau.ﬁ.all
dav

%°0
|

|

0

- 112 -

8°0-




- 113

°a °g |
GZ°0 = Aﬂy ‘GT°0 = Aml. ‘T°0 = 4
av
W.yJ 40 SANTVA SNOTYVA ¥Od NOIINETNLSIA TANSSTEd ‘17 NOIL
0°'1 8°0 90 %°0 2°0 0

I 1 1 ! £°0-




- 114 ~

°d “om ) .

G20 = j=——| ‘0°T = 2'0= A
o] -
d 18 ﬂemq \
d,y/ 40 SINTIVA SNOIYVA ¥O4 NOIINGTHISIA FUASSTAd °TT TUNIIL
0°'1 m, 8°0 9°'0 %°0 - 0
{ 1 | | 2°0-
1°0-




1S T

% °d °a
mN.ou Tﬂv ,mN.on Am.lw .o.an Ty.lu
mq mq

A 40 SINTIVA SNOIYVA ¥0d STIVM IAIS NIIMLIAG AVMAIR INAWIOVIASIA TIVM TVIION °€7 JdNOIJ
1 9°0 %0 A 0
| I

[ 3

0°T 8°0
[ T |

Bt

0°'1




- 116 -

G-

\Om mom ~
§z°0 = ?llw ‘6200 = »ﬂlv z'o= A
dv dv:

v 40 SHNTVA SNO0I¥VA ¥04 STIVM JAIS NIIMLIG AVMAIN INIHIOVIASIA TIVM TVWION ‘%7 TINOIA

. T . . .
8°'0 5 9°0 7°0 ¢°0 0
] | 0

0°1

( o-1)¢1
_.i—f_—-. X

¥
0]




